cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266785 The growth series for the affine Weyl group E_7.

Original entry on oeis.org

1, 8, 35, 112, 294, 673, 1393, 2668, 4803, 8218, 13476, 21315, 32684, 48782, 71101, 101473, 142121, 195714, 265426, 354999, 468809, 611936, 790238, 1010430, 1280166, 1608124, 2004094, 2479071, 3045353, 3716642, 4508148, 5436696, 6520838, 7780968, 9239441, 10920695, 12851378, 15060479, 17579463, 20442410, 23686158, 27350450, 31478083
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, Table 10.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial; also Table 3.1 page 59.

Crossrefs

For the growth series for the finite group see A162493.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 45); Coefficients(R!( ((1-x^2)*(1-x^18)/((1-x)^8*(1-x^17)))*(&*[(1-x^(2*j+6))/(1-x^(2*j+5)): j in [0..4]]) )); // G. C. Greubel, Feb 04 2020
    
  • Maple
    m:=45; S:=series(((1-x^2)*(1-x^18)/((1-x)^8*(1-x^17)))*mul((1-x^(2*j+6))/(1-x^(2*j+5)), j=0..4)), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 04 2020
  • Mathematica
    CoefficientList[Series[((1-x^2)*(1-x^18)/((1-x)^8*(1-x^17)))*Product[(1-x^(2*j + 6))/(1-x^(2*j+5)), {j,0,4}], {x,0,45}], x] (* G. C. Greubel, Feb 04 2020 *)
  • PARI
    Vec( ((1-x^2)*(1-x^18)/((1-x)^8*(1-x^17)))*prod(j=0,4, (1-x^(2*j+6))/(1-x^(2*j+5))) +O('x^45) ) \\ G. C. Greubel, Feb 04 2020
    
  • Sage
    def A266785_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1-x^2)*(1-x^18)/((1-x)^8*(1-x^17)))*product((1-x^(2*j+6))/(1-x^(2*j+5)) for j in (0..4)) ).list()
    A266785_list(45) # G. C. Greubel, Feb 04 2020

Formula

G.f.: (1 +t)*(1 +t^3)*(1 +t^5)*(1 +t^7)*(1 +t +t^2 +t^3 +t^4 +t^5 +t^6 +t^7)*(1 +t +t^2 +t^9 +t^10 +t^11)*(1 +t +t^2 +t^3 +t^4 +t^5 +t^6 +t^7 +t^8 +t^9 +t^10 +t^11)/((1-t)^4*(1-t^11)*(1-t^13)*(1-t^17)).
G.f.: ((1-x^2)*(1-x^18)/((1-x)^8*(1-x^17)))*Product_{j=0..4} (1-x^(2*j+6))/(1-x^(2*j+5)). - G. C. Greubel, Feb 05 2020