A265762
Coefficient of x in minimal polynomial of the continued fraction [1^n,2,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
-3, -5, -15, -37, -99, -257, -675, -1765, -4623, -12101, -31683, -82945, -217155, -568517, -1488399, -3896677, -10201635, -26708225, -69923043, -183060901, -479259663, -1254718085, -3284894595, -8599965697, -22515002499, -58945041797, -154320122895
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[2,1,1,1,1,...] = (3 + sqrt(5))/2 has p(0,x) = x^2 - 3x + 1, so a(0) = -3;
[1,2,1,1,1,...] = (5 - sqrt(5))/2 has p(1,x) = x^2 - 5x + 5, so a(1) = -5;
[1,1,2,1,1,...] = (15 + sqrt(5))/10 has p(2,x) = 5x^2 - 15x + 11, so a(2) = -15.
-
I:=[-3,-5,-15]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 05 2016
-
Program 1:
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A236428 *)
Coefficient[t, x, 1] (* A265762 *)
Coefficient[t, x, 2] (* A236428 *)
Program 2:
LinearRecurrence[{2, 2, -1}, {-3, -5, -15}, 50] (* Vincenzo Librandi, Jan 05 2016 *)
-
Vec((-3+x+x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 04 2016
A266800
Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-8, -12, -98, -636, -4424, -30138, -207032, -1417788, -9720866, -66619404, -456638168, -3129787002, -21452029928, -147034005996, -1007787102434, -6907472856348, -47344530365672, -324504220137018, -2224185061818776, -15244791078484764, -104489352838678178
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -8;
[1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = -12;
[1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = -98.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266799 *)
Coefficient[t, x, 1]; (* A266800 *)
Coefficient[t, x, 2]; (* A266801 *)
Coefficient[t, x, 3]; (* A266802 *)
Coefficient[t, x, 4]; (* A266799 *)
A266801
Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-7, 23, 65, 653, 3935, 28373, 190793, 1317335, 9003953, 61779965, 423273503, 2901611813, 19886759705, 136308977303, 934267517345, 6403586065133, 43890776239583, 300832001287925, 2061932830446953, 14132698865151575, 96866956468010513, 663936003630421853
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -7;
[1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = 23;
[1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = 65.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266799 *)
Coefficient[t, x, 1]; (* A266800 *)
Coefficient[t, x, 2]; (* A266801 *)
Coefficient[t, x, 3]; (* A266802 *)
Coefficient[t, x, 4]; (* A266799 *)
A266802
Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
2, -12, -16, -294, -1552, -11868, -78142, -543996, -3706624, -25463142, -174376288, -1195587372, -8193644926, -56162781804, -384938354032, -2638425262758, -18083987259952, -123949619666556, -849562999302334, -5822992294650972, -39911380656754528
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x) = 1 - 8 x - 7 x^2 + 2 x^3 + x^4, so a(0) = 2;
[1,sqrt(3),1,1,1,...] has p(1,x) = 1 - 12 x + 23 x^2 - 12 x^3 + x^4, so a(1) = -12;
[1,1,sqrt(3),1,1,1...] has p(2,x) = 49 - 98 x + 65 x^2 - 16 x^3 + x^4, so a(2) = -16.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266799 *)
Coefficient[t, x, 1]; (* A266800 *)
Coefficient[t, x, 2]; (* A266801 *)
Coefficient[t, x, 3]; (* A266802 *)
Coefficient[t, x, 4]; (* A266799 *)
Showing 1-4 of 4 results.
Comments