cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A265762 Coefficient of x in minimal polynomial of the continued fraction [1^n,2,1,1,1,...], where 1^n means n ones.

Original entry on oeis.org

-3, -5, -15, -37, -99, -257, -675, -1765, -4623, -12101, -31683, -82945, -217155, -568517, -1488399, -3896677, -10201635, -26708225, -69923043, -183060901, -479259663, -1254718085, -3284894595, -8599965697, -22515002499, -58945041797, -154320122895
Offset: 0

Views

Author

Clark Kimberling, Jan 04 2016

Keywords

Comments

In the following guide to related sequences, d(n), e(n), f(n) represent the coefficients in the minimal polynomial written as d(n)*x^2 + e(n)*x + f(n), except, in some cases, for initial terms. All of these sequences (eventually) satisfy the linear recurrence relation a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
continued fractions d(n) e(n) f(n)
[1^n,2,1,1,1,...] A236428 A265762 A236428
[1^n,3,1,1,1,...] A236428 A265762 A236428
[1^n,4,1,1,1,...] A265802 A265803 A265802
[1^n,5,1,1,1,...] A265804 A265805 A265804
[1^n,1/2,1,1,1,...] A266699 A266700 A266699
[1^n,1/3,1,1,1,...] A266701 A266702 A266701
[1^n,2/3,1,1,1,...] A266703 A266704 A266703
[1^n,sqrt(5),1,1,1,...] A266705 A266706 A266705
[1^n,tau,1,1,1,...] A266707 A266708 A266707
[2,1^n,2,1,1,1,...] A236428 A266709 A236428
The following forms of continued fractions have minimal polynomials of degree 4 and, after initial terms, satisfy the following linear recurrence relation:
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5).
[1^n,sqrt(2),1,1,1,...]: A266710, A266711, A266712, A266713, A266710
[1^n,sqrt(3),1,1,1,...]: A266799, A266800, A266801, A266802, A266799
[1^n,sqrt(6),1,1,1,...]: A266804, A266805, A266806, A266807, A277804
Continued fractions [1^n,2^(1/3),1,1,1,...] have minimal polynomials of degree 6. The coefficient sequences are linearly recurrenct with signature {13, 104, -260, -260, 104, 13, -1, 0, 0}; see A267078-A267083.
Continued fractions [1^n,sqrt(2)+sqrt(3),1,1,1,...] have minimal polynomials of degree 8. The coefficient sequences are linearly recurrenct with signature {13, 104, -260, -260, 104, 13, -1}; see A266803, A266808, A267061-A267066.

Examples

			Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[2,1,1,1,1,...] = (3 + sqrt(5))/2 has p(0,x) = x^2 - 3x + 1, so a(0) = -3;
[1,2,1,1,1,...] = (5 - sqrt(5))/2 has p(1,x) = x^2 - 5x + 5, so a(1) = -5;
[1,1,2,1,1,...] = (15 + sqrt(5))/10 has p(2,x) = 5x^2 - 15x + 11, so a(2) = -15.
		

Crossrefs

Programs

  • Magma
    I:=[-3,-5,-15]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 05 2016
  • Mathematica
    Program 1:
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
    Coefficient[t, x, 0] (* A236428 *)
    Coefficient[t, x, 1] (* A265762 *)
    Coefficient[t, x, 2] (* A236428 *)
    Program 2:
    LinearRecurrence[{2, 2, -1}, {-3, -5, -15}, 50] (* Vincenzo Librandi, Jan 05 2016 *)
  • PARI
    Vec((-3+x+x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 04 2016
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (-3 + x + x^2)/(1 - 2 x - 2 x^2 + x^3).
a(n) = (-1)*(2^(-n)*(3*(-2)^n+2*((3-sqrt(5))^(1+n)+(3+sqrt(5))^(1+n))))/5. - Colin Barker, Sep 27 2016

A266800 Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

-8, -12, -98, -636, -4424, -30138, -207032, -1417788, -9720866, -66619404, -456638168, -3129787002, -21452029928, -147034005996, -1007787102434, -6907472856348, -47344530365672, -324504220137018, -2224185061818776, -15244791078484764, -104489352838678178
Offset: 0

Views

Author

Clark Kimberling, Jan 09 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -8;
[1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = -12;
[1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = -98.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0] ; (* A266799 *)
    Coefficient[t, x, 1];  (* A266800 *)
    Coefficient[t, x, 2];  (* A266801 *)
    Coefficient[t, x, 3];  (* A266802 *)
    Coefficient[t, x, 4];  (* A266799 *)

Formula

a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) .
G.f.: -((2 (-4 + 14 x + 41 x^2 - 43 x^3 + 3 x^4))/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5)).

A266801 Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

-7, 23, 65, 653, 3935, 28373, 190793, 1317335, 9003953, 61779965, 423273503, 2901611813, 19886759705, 136308977303, 934267517345, 6403586065133, 43890776239583, 300832001287925, 2061932830446953, 14132698865151575, 96866956468010513, 663936003630421853
Offset: 0

Views

Author

Clark Kimberling, Jan 09 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x)=1-8x-7x^2+2x^3+x^4, so a(0) = -7;
[1,sqrt(3),1,1,1,...] has p(1,x)=1-12x+23x^2-12x^3+x^4, so a(1) = 23;
[1,1,sqrt(3),1,1,1...] has p(2,x)=49-98x+65x^2-16x^3+x^4, so a(2) = 65.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0] ; (* A266799 *)
    Coefficient[t, x, 1];  (* A266800 *)
    Coefficient[t, x, 2];  (* A266801 *)
    Coefficient[t, x, 3];  (* A266802 *)
    Coefficient[t, x, 4];  (* A266799 *)

Formula

a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) .
G.f.: (7 - 58 x - 55 x^2 + 122 x^3 - 5 x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5).

A266802 Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

2, -12, -16, -294, -1552, -11868, -78142, -543996, -3706624, -25463142, -174376288, -1195587372, -8193644926, -56162781804, -384938354032, -2638425262758, -18083987259952, -123949619666556, -849562999302334, -5822992294650972, -39911380656754528
Offset: 0

Views

Author

Clark Kimberling, Jan 09 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(3),1,1,1,...] has p(0,x) = 1 - 8 x - 7 x^2 + 2 x^3 + x^4, so a(0) = 2;
[1,sqrt(3),1,1,1,...] has p(1,x) = 1 - 12 x + 23 x^2 - 12 x^3 + x^4, so a(1) = -12;
[1,1,sqrt(3),1,1,1...] has p(2,x) = 49 - 98 x + 65 x^2 - 16 x^3 + x^4, so a(2) = -16.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0] ; (* A266799 *)
    Coefficient[t, x, 1];  (* A266800 *)
    Coefficient[t, x, 2];  (* A266801 *)
    Coefficient[t, x, 3];  (* A266802 *)
    Coefficient[t, x, 4];  (* A266799 *)

Formula

a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5) .
G.f.: (2 (-1 + 11 x - 7 x^2 + 2 x^3 + 6 x^4))/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5).
Showing 1-4 of 4 results.