A265762
Coefficient of x in minimal polynomial of the continued fraction [1^n,2,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
-3, -5, -15, -37, -99, -257, -675, -1765, -4623, -12101, -31683, -82945, -217155, -568517, -1488399, -3896677, -10201635, -26708225, -69923043, -183060901, -479259663, -1254718085, -3284894595, -8599965697, -22515002499, -58945041797, -154320122895
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[2,1,1,1,1,...] = (3 + sqrt(5))/2 has p(0,x) = x^2 - 3x + 1, so a(0) = -3;
[1,2,1,1,1,...] = (5 - sqrt(5))/2 has p(1,x) = x^2 - 5x + 5, so a(1) = -5;
[1,1,2,1,1,...] = (15 + sqrt(5))/10 has p(2,x) = 5x^2 - 15x + 11, so a(2) = -15.
-
I:=[-3,-5,-15]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 05 2016
-
Program 1:
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A236428 *)
Coefficient[t, x, 1] (* A265762 *)
Coefficient[t, x, 2] (* A236428 *)
Program 2:
LinearRecurrence[{2, 2, -1}, {-3, -5, -15}, 50] (* Vincenzo Librandi, Jan 05 2016 *)
-
Vec((-3+x+x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 04 2016
A266805
Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(6),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-14, -90, -722, -4830, -33554, -228954, -1572110, -10768122, -73825010, -505954014, -3467991794, -23769625530, -162920337422, -1116670248090, -7653777913874, -52459758093534, -359564573392850, -2464492138756122, -16891880703949070, -115778671987640634
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(6),1,1,1,...] has p(0,x) = 19-14x-13x^2+2x^3+x^4, so a(0) = -14;
[1,sqrt(6),1,1,1,...] has p(1,x) = 19-90x+143x^2-90x^3+19x^4, so a(1) = -90;
[1,1,sqrt(6),1,1,1...] has p(2,x) = 361-722x+527x^2-166x^3+19x^4, so a(2) = -722.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[6]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266804 *)
Coefficient[t, x, 1]; (* A266805 *)
Coefficient[t, x, 2]; (* A266806 *)
Coefficient[t, x, 3]; (* A266807 *)
Coefficient[t, x, 4]; (* A266804 *)
A266806
Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(6),1,1,...], where 1^n means n ones. S.
Original entry on oeis.org
-13, 143, 527, 4859, 30119, 214847, 1450643, 10000367, 68393039, 469166939, 3214686407, 22036489343, 151033273907, 1035215971919, 7095427362959, 48632909524667, 333334588608743, 2284710128883647, 15659633909836499, 107332733533045679, 735669484346002127
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(6),1,1,1,...] has p(0,x)=19-14x-13x^2+2x^3+x^4, so a(0) = -13;
[1,sqrt(6),1,1,1,...] has p(1,x)=19-90x+143x^2-90x^3+19x^4, so a(1) = 143;
[1,1,sqrt(6),1,1,1...] has p(2,x)=361-722x+527x^2-166x^3+19x^4, so a(2) = 527.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[6]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266804 *)
Coefficient[t, x, 1]; (* A266805 *)
Coefficient[t, x, 2]; (* A266806 *)
Coefficient[t, x, 3]; (* A266807 *)
Coefficient[t, x, 4]; (* A266804 *)
-
Vec((13-208*x-7*x^2+116*x^3+x^4)/(-1+5*x+15*x^2-15*x^3-5*x^4+x^5) + O(x^200)) \\ Altug Alkan, Jan 10 2015
A266807
Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(6),1,1,...], where 1^n means n ones.
Original entry on oeis.org
2, -90, -166, -2166, -12010, -89598, -594910, -4127706, -28160326, -193357590, -1324392298, -9079876830, -62228230846, -426534794586, -2923470679270, -20037876860598, -137341361295850, -941352453457086, -6452123715212446, -44223519044857050
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[sqrt(6),1,1,1,...] has p(0,x)=19-14x-13x^2+2x^3+x^4, so a(0) = 2;
[1,sqrt(6),1,1,1,...] has p(1,x)=19-90x+143x^2-90x^3+19x^4, so a(1) = -90;
[1,1,sqrt(6),1,1,1...] has p(2,x)=361-722x+527x^2-166x^3+19x^4, so a(2) = -166. ~
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[6]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0] ; (* A266804 *)
Coefficient[t, x, 1]; (* A266805 *)
Coefficient[t, x, 2]; (* A266806 *)
Coefficient[t, x, 3]; (* A266807 *)
Coefficient[t, x, 4]; (* A266804 *)
Showing 1-4 of 4 results.
Comments