cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A266819 Expansion of Product_{k>=1} ((1 + x^k) * (1 + 2*x^k)).

Original entry on oeis.org

1, 3, 5, 12, 20, 33, 60, 93, 144, 222, 340, 498, 729, 1050, 1486, 2115, 2946, 4068, 5592, 7608, 10278, 13854, 18483, 24528, 32426, 42594, 55677, 72498, 94008, 121290, 156002, 199842, 255012, 324438, 411318, 519771, 655128, 823056, 1031148, 1288590, 1605945
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

Convolution of A000009 and A032302.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(6*Pi)*n^(3/4)), where c = Pi^2/4 + log(2)^2/2 + polylog(2, -1/2) = 2.259213400307794164599109607216595948859... .

A266820 Expansion of Product_{k>=1} ((1 + 2*x^k) * (1 + 3*x^k)).

Original entry on oeis.org

1, 5, 11, 30, 66, 115, 252, 445, 762, 1350, 2238, 3690, 5909, 9480, 14460, 22475, 34326, 51150, 76398, 111810, 163350, 236610, 339667, 482040, 684060, 960780, 1340953, 1863570, 2573022, 3533310, 4830822, 6580170, 8900382, 12011430, 16125198, 21567965
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

Convolution of A032302 and A032308.
In general, for m1 > 0 and m2 > 0, if g.f. = Product_{k>=1} ((1 + m1*x^k) * (1 + m2*x^k)) then a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt((m1+1)*(m2+1)*Pi) * n^(3/4)), where c = Pi^2/3 + log(m1)^2/2 + log(m2)^2/2 + polylog(2, -1/m1) + polylog(2, -1/m2).

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+2*x^k) * (1+3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4*sqrt(3*Pi) * n^(3/4)), where c = Pi^2/3 + log(2)^2/2 + log(3)^2/2 + polylog(2, -1/2) + polylog(2, -1/3) = 6.665989921346842772385004076363525173910446415877... .
Showing 1-2 of 2 results.