A266858 Number of acyclic orientations of the Turán graph T(n,3).
1, 1, 2, 6, 18, 78, 426, 2286, 15402, 122190, 951546, 8724078, 90768378, 928340190, 10779805722, 138779942046, 1759271695338, 24739709631678, 379578822373866, 5743346972756526, 94864142045862282, 1689637343582548590, 29717468115957434586, 563879701735681033998
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..465
- P. J. Cameron, C. A. Glass, R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Turán graph
Programs
-
Mathematica
A[n_, k_] := A[n, k] = Module[{b, l, q}, q = -1; l = Join[Array[Floor[ n/k]&, k - Mod[n, k]], Array[Ceiling[n/k]&, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j==1, (q-nn)^l[[1]] Product[q-i, {i, 0, nn-1}], Sum[b[nn + m, j-1] StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]]; a[n_] := A[n, 3]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 20 2018, after Alois P. Heinz *)
Formula
a(n) ~ n! / (2*(1 - log(3/2)) * 3^n * (log(3/2))^(n+1)). - Vaclav Kotesovec, Feb 18 2017
Comments