A266871 Number of partitions of n that maximize the product of multiplicities of parts.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1
Offset: 0
Keywords
Examples
a(8) = 2: [1,1,1,1,1,1,1,1], [1,1,1,1,2,2] (product of multiplicities = 8). a(9) = 1: [1,1,1,1,1,2,2] (product = 10). a(10) = 2: [1,1,1,1,1,1,2,2], [1,1,1,1,2,2,2] (product = 12). a(11) = 1: [1,1,1,1,1,2,2,2] (product = 15). a(23) = 3: [1,1,1,1,1,1,1,1,1,2,2,2,2,3,3], [1,1,1,1,1,1,1,1,2,2,2,3,3,3], [1,1,1,1,1,1,2,2,2,2,3,3,3] (product = 72).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
Programs
-
Maple
b:= proc(n, i) option remember; local r,l,j; if n=0 or i=1 then [max(1, n),1] else r:= b(n, i-1); for j to iquo(n, i) do l:= (w-> [w[1]*j, w[2]])(b(n-i*j, i-1)); r:= `if`(l[1]>r[1], l, `if`(l[1]=r[1], [0, l[2]], 0)+r) od; r fi end: a:= n-> b(n$2)[2]: seq(a(n), n=1..120);
-
Mathematica
b[n_, i_] := b[n, i] = Module[{r, l, j}, If[n == 0 || i == 1, {Max[1, n], 1}, r = b[n, i - 1]; For[j = 1, j <= Quotient[n, i], j++, l = Function[w, {w[[1]]*j, w[[2]]}][b[n - i*j, i - 1]]; r = If[l[[1]] > r[[1]], l, If[l[[1]] == r[[1]], {0, l[[2]]}, 0] + r]]; r]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Dec 21 2016, translated from Maple *)