cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266871 Number of partitions of n that maximize the product of multiplicities of parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Emeric Deutsch and Alois P. Heinz, Jan 04 2016

Keywords

Examples

			a(8) = 2: [1,1,1,1,1,1,1,1], [1,1,1,1,2,2] (product of multiplicities = 8).
a(9) = 1: [1,1,1,1,1,2,2] (product = 10).
a(10) = 2: [1,1,1,1,1,1,2,2], [1,1,1,1,2,2,2] (product = 12).
a(11) = 1: [1,1,1,1,1,2,2,2] (product = 15).
a(23) = 3: [1,1,1,1,1,1,1,1,1,2,2,2,2,3,3], [1,1,1,1,1,1,1,1,2,2,2,3,3,3], [1,1,1,1,1,1,2,2,2,2,3,3,3] (product = 72).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local r,l,j;
          if n=0 or i=1 then [max(1, n),1]
        else r:= b(n, i-1);
             for j to iquo(n, i) do
               l:= (w-> [w[1]*j, w[2]])(b(n-i*j, i-1));
               r:= `if`(l[1]>r[1], l,
                   `if`(l[1]=r[1], [0, l[2]], 0)+r)
             od; r
          fi
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..120);
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{r, l, j}, If[n == 0 || i == 1, {Max[1, n], 1}, r = b[n, i - 1]; For[j = 1, j <= Quotient[n, i], j++, l = Function[w, {w[[1]]*j, w[[2]]}][b[n - i*j, i - 1]]; r = If[l[[1]] > r[[1]], l, If[l[[1]] == r[[1]], {0, l[[2]]}, 0] + r]]; r]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Dec 21 2016, translated from Maple *)

Formula

a(n) = A266477(n,A266480(n)).