cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266954 Primes of the form p = a^2 + b^2 where neither |a+b| nor |a-b| is prime.

Original entry on oeis.org

41, 113, 313, 353, 613, 653, 677, 761, 857, 977, 1013, 1201, 1301, 1373, 1553, 1613, 1733, 1877, 1913, 2113, 2153, 2213, 2237, 2273, 2297, 2333, 2381, 2477, 2657, 2693, 2713, 3137, 3313, 3329, 3413, 3581, 3593, 3613, 3833, 4013, 4157, 4253, 4373, 4397, 4481
Offset: 1

Views

Author

Robert Israel, Jan 06 2016

Keywords

Programs

  • Maple
    filter:= proc(q) local t,p;
          if not isprime(q) then return false fi;
          t:= op(op(1,GaussInt:-GIfactor(q)));
        p:= [abs(Re(t)+Im(t)),abs(Re(t)-Im(t))];
        not isprime(p[1]) and not isprime(p[2])
    end proc:
    select(filter, [seq(i, i=1..10000, 4)]);
  • Mathematica
    lst = {}; Do[If[PrimeQ[a^2 + b^2] && ! PrimeQ[a + b] && ! PrimeQ[a - b], AppendTo[lst, a^2 + b^2]], {a, 2, 67}, {b, a -1}]; Take[ Union@ lst, 50] (* Robert G. Wilson v, Jan 06 2016 *)