A266957 Numbers m such that 9*m+10 is a square.
-1, 6, 10, 31, 39, 74, 86, 135, 151, 214, 234, 311, 335, 426, 454, 559, 591, 710, 746, 879, 919, 1066, 1110, 1271, 1319, 1494, 1546, 1735, 1791, 1994, 2054, 2271, 2335, 2566, 2634, 2879, 2951, 3210, 3286, 3559, 3639, 3926, 4010, 4311, 4399, 4714, 4806, 5135, 5231, 5574
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[n: n in [-1..6000] | IsSquare(9*n+10)];
-
Magma
[(18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8: n in [1..50]];
-
Mathematica
Select[Range[-1, 6000], IntegerQ[Sqrt[9 # + 10]] &] Table[(18 (n - 1) n + 5 (2 n - 1) (-1)^n - 3)/8, {n, 1, 50}]
-
PARI
for(n=-1, 6000, if(issquare(9*n+10), print1(n, ", ")))
-
PARI
vector(50, n, n; (18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8)
-
Python
from gmpy2 import is_square [n for n in range(-1,6000) if is_square(9*n+10)]
-
Python
[(18*(n-1)*n+5*(2*n-1)*(-1)**n-3)/8 for n in range(1, 60)]
-
Sage
[n for n in (-1..6000) if is_square(9*n+10)]
-
Sage
[(18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8 for n in (1..50)]
Formula
G.f.: x*(-1 + 7*x + 6*x^2 + 7*x^3 - x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (18*(n-1)*n + 5*(2*n-1)*(-1)^n - 3)/8.
a(n) = A132355(n) + 1.
Comments