cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266960 Integer averages of first n Fibonacci numbers (beginning with F(0)).

Original entry on oeis.org

0, 1, 2, 6, 13, 356, 3126, 28691, 70268, 271396, 6534495, 64591632, 162057126, 26237436541, 66438353080, 7020479040553, 11201604625686, 296414282891996, 32360305554728271, 339791857819043616, 871053578019254406, 5731478440138170841, 9181907843495831675
Offset: 1

Views

Author

Altug Alkan, Jan 07 2016

Keywords

Comments

It seems only 0, 1, 2, 13 are Fibonacci numbers.
Are there other Fibonacci numbers of the form (Fibonacci(k) - 1) / (k - 1)?
2 and 13 are the prime numbers. Are there other prime numbers in this sequence?

Examples

			1 is a term because (Fibonacci(0) + Fibonacci(1) + Fibonacci(2) + Fibonacci(3)) / 4 = 4 / 4 = 1.
2 is a term because (Fibonacci(0) + Fibonacci(1) + Fibonacci(2) + Fibonacci(3) + Fibonacci(4) + Fibonacci(5)) / 6 = 12 / 6 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Mean@ Fibonacci@ Range[0, n], {n, 0, 100}] /. Rational -> Nothing (* _Michael De Vlieger, Jan 07 2016 *)
    Module[{nn=100,fibs},fibs=Accumulate[Fibonacci[Range[0,nn]]];Select[ #[[1]] / #[[2]]&/@Thread[{fibs,Range[nn+1]}],IntegerQ]] (* Harvey P. Dale, Nov 15 2020 *)
  • PARI
    m(n) = sum(k=0, n, fibonacci(k)) % (n+1);
    b(n) = sum(k=0, n, fibonacci(k)) / (n+1);
    for(n=0, 1e2, if(m(n)==0, print1(b(n), ", ")));

Formula

a(n) = A000071(A219612(n) + 1) / A219612(n).