cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A266989 Primes for which the average of the primitive roots is < p/2.

Original entry on oeis.org

31, 43, 67, 223, 379, 491, 619, 631, 643, 683, 859, 883, 907, 1051, 1091, 1423, 1747, 1987, 2143, 2347, 2371, 2467, 2531, 2767, 3307, 3643, 3691, 3739, 3823, 3931, 4019, 4219, 4519, 4691, 4987, 5059, 5107, 5347, 5683, 5827, 6043
Offset: 1

Views

Author

Dimitri Papadopoulos, Jan 08 2016

Keywords

Comments

These primes are congruent to 3 (mod 4).

Examples

			a(1)=31. The primitive roots of 31 are 3, 11, 12, 13, 17, 21, 22, and 24.
Their average is (3+11+12+13+17+21+22+24)/phi(30)=123/8<31/2.
		

Crossrefs

Programs

  • Maple
    f:= proc(p) local g;
      if not isprime(p) then return false fi;
      g:= numtheory[primroot](p);
      evalb(add(g&^i mod p, i = select(t->igcd(t,p-1)=1, [$1..p-2]))
         < p/2 * numtheory:-phi(p-1))
    end proc:
    select(f, [seq(i,i=3..10000,4)]); # Robert Israel, Feb 09 2016
  • Mathematica
    A = Table[Total[Flatten[Position[Table[MultiplicativeOrder[i, Prime[k]], {i, Prime[k] - 1}],Prime[k] - 1]]]/(EulerPhi[Prime[k] - 1] Prime[k]/2), {k, 1,100}]; Prime[Flatten[Position[A, _?(# < 1 &)]]]
  • PARI
    ar(p) = my(r, pr, j); r=vector(eulerphi(p-1)); pr=znprimroot(p); for(i=1, p-1, if(gcd(i, p-1)==1, r[j++]=lift(pr^i))); vecsort(r) ;
    isok(p) = my(vr = ar(p)); vecsum(vr)/#vr < p/2;
    lista(nn) = forprime(p=2, nn, if (isok(p), print1(p, ", "))); \\ Michel Marcus, Feb 09 2016

Formula

a(n) = prime(A266988(n)).
Showing 1-1 of 1 results.