A267017 Digital roots of the stella octangula numbers.
0, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
FixedPoint[Total@ IntegerDigits@ # &, #] & /@ Table[n (2 n^2 - 1), {n, 0, 108}] (* Michael De Vlieger, Jan 09 2016 *)
-
PARI
A010888(n)=if(n, (n-1)%9+1); a(n) = A010888(n*(2*n^2 - 1)); \\ Michel Marcus, Jan 10 2016
-
PARI
concat(0, Vec(x*(1+5*x+6*x^2+7*x^3+2*x^4+3*x^5+4*x^6+8*x^7+9*x^8) / ((1-x)*(1+x+x^2)*(1+x^3+x^6)) + O(x^100))) \\ Colin Barker, Jan 10 2016
Formula
From Colin Barker, Jan 10 2016: (Start)
a(n) = a(n-9) for n>9.
G.f.: x*(1+5*x+6*x^2+7*x^3+2*x^4+3*x^5+4*x^6+8*x^7+9*x^8) / ((1-x)*(1+x+x^2)*(1+x^3+x^6)).
(End)
Comments