cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267068 a(n) = (n+1) / A189733(n).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 2, 11, 1, 13, 2, 3, 2, 17, 1, 19, 2, 3, 2, 23, 1, 25, 2, 3, 2, 29, 1, 31, 2, 3, 2, 35, 1, 37, 2, 3, 2, 41, 1, 43, 2, 3, 2, 47, 1, 49, 2, 3, 2, 53, 1, 55, 2, 3, 2, 59, 1, 61, 2, 3, 2, 65, 1, 67, 2, 3, 2
Offset: 0

Views

Author

Paul Curtz, Jan 10 2016

Keywords

Comments

A189733(n) is the denominator of an autosequence of the first kind (the main diagonal is A000004).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + 2 x + 3 x^2 + 2 x^3 + 5 x^4 + x^5 + 5 x^6 - 2 x^7 - 3 x^8 - 2 x^9 + x^10 - x^11)/((1 - x)^2 (1 + x)^2 (1 - x + x^2)^2 (1 + x + x^2)^2), {x, 0, 69}], x] (* or *)
    b[m_, n_] := b[m, n] = Which[m == n, 0, n == m + 1, (-1)^(n + 1)/n, n > m, b[m, n - 1] + b[m + 1, n - 1], n < m, b[m - 1, n + 1] - b[m - 1, n]]; Table[(n + 1)/Denominator@ b[0, n], {n, 0, 69}] (* Michael De Vlieger, Jan 15 2016, Jean-François Alcover at A189733 *)

Formula

a(2n+1) = A130196(n+1).
A052901(n+2) = period 3: 2, 3, 2 is at rank A047245(n+1) = 1, 2, 3, 7, 8, 9, ... .
Conjectures from Colin Barker, Jan 10 2016: (Start)
a(n) = 2*a(n-6) - a(n-12) for n>11.
G.f.: (1+2*x+3*x^2+2*x^3+5*x^4+x^5+5*x^6-2*x^7-3*x^8-2*x^9+x^10-x^11) / ((1-x)^2*(1+x)^2*(1-x+x^2)^2*(1+x+x^2)^2).
(End)
a(3n) + a(3n+1) + a(3n+2) = A047238(n+3).