A267078
Coefficient of x^0 in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-5, -11, 131, 3421, 56209, 1049105, 18561659, 334918459, 5997328339, 107703879581, 1932077585345, 34673771913121, 622167861459451, 11164539354582251, 200338227165577379, 3594932551574173405, 64508386001097153649, 1157556438367284595889
Offset: 0
Let u = 2^(1/3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u,1,1,1,...] has p(0,x) = -5 - 15 x - 6 x^2 - 9 x^3 + 3 x^5 + x^6, so that a(0) = -5.
[1,u,1,1,1,...] has p(1,x) = -11 + 45 x - 66 x^2 + 35 x^3 + 6 x^4 - 15 x^5 + 5 x^6, so that a(1) = -11;
[1,1,u,1,1,1...] has p(2,x) = 131 - 633 x + 1110 x^2 - 969 x^3 + 456 x^4 - 111 x^5 + 11 x^6, so that a(2) = 131.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2^(1/3)}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 30}]
Coefficient[t, x, 0]; (* A267078 *)
Coefficient[t, x, 1]; (* A267079 *)
Coefficient[t, x, 2]; (* A267080 *)
Coefficient[t, x, 3]; (* A267081 *)
Coefficient[t, x, 4]; (* A267082 *)
Coefficient[t, x, 5]; (* A267083 *)
Coefficient[t, x, 6]; (* A267084 *)
-
Vec(-(5 - 54*x - 794*x^2 - 1562*x^3 + 6048*x^4 + 5676*x^5 - 2287*x^6 - 286*x^7 + 22*x^8)/((1 + x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 07 2018
A267083
Coefficient of x^5 in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
3, -15, -111, -1419, -32847, -549633, -10161885, -180368529, -3250331151, -58231071723, -1045558051887, -18757368165345, -336617548680381, -6040149618970929, -108387507398297007, -1944925169961946443, -34900332815651650575, -626260604480315081409
Offset: 0
Let u = 2^(1/3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u,1,1,1,...] has p(0,x) = -5 - 15 x - 6 x^2 - 9 x^3 + 3 x^5 + x^6, so that a(0) = 3.
[1,u,1,1,1,...] has p(1,x) = -11 + 45 x - 66 x^2 + 35 x^3 + 6 x^4 - 15 x^5 + 5 x^6, so that a(1) = -15;
[1,1,u,1,1,1...] has p(2,x) = 131 - 633 x + 1110 x^2 - 969 x^3 + 456 x^4 - 111 x^5 + 11 x^6, so that a(2) = -111.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2^(1/3)}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 30}]
Coefficient[t, x, 0]; (* A267078 *)
Coefficient[t, x, 1]; (* A267079 *)
Coefficient[t, x, 2]; (* A267080 *)
Coefficient[t, x, 3]; (* A267081 *)
Coefficient[t, x, 4]; (* A267082 *)
Coefficient[t, x, 5]; (* A267083 *)
Coefficient[t, x, 6]; (* A266527 *)
-
Vec(3*(1 - 18*x - 76*x^2 + 788*x^3 - 1992*x^4 - 2706*x^5 + 1051*x^6 + 130*x^7 - 10*x^8)/((1 + x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 07 2018
A267079
Coefficient of x in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-15, 45, -633, -12321, -212379, -3867255, -68998575, -1240820397, -22247101689, -399334774401, -7164902653275, -128574917201655, -2307142450214223, -41400271270803501, -742895806968482169, -13330737506206610145, -239210288473732159515
Offset: 0
Let u = 2^(1/3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u,1,1,1,...] has p(0,x) = -5 - 15 x - 6 x^2 - 9 x^3 + 3 x^5 + x^6, so that a(0) = -15.
[1,u,1,1,1,...] has p(1,x) = -11 + 45 x - 66 x^2 + 35 x^3 + 6 x^4 - 15 x^5 + 5 x^6, so that a(1) = 45;
[1,1,u,1,1,1...] has p(2,x) = 131 - 633 x + 1110 x^2 - 969 x^3 + 456 x^4 - 111 x^5 + 11 x^6, so that a(2) = -633.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2^(1/3)}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 30}]
Coefficient[t, x, 0]; (* A267078 *)
Coefficient[t, x, 1]; (* A267079 *)
Coefficient[t, x, 2]; (* A267080 *)
Coefficient[t, x, 3]; (* A267081 *)
Coefficient[t, x, 4]; (* A267082 *)
Coefficient[t, x, 5]; (* A267083 *)
Coefficient[t, x, 6]; (* A266527 *)
-
Vec(-3*(5 - 80*x - 114*x^2 + 4224*x^3 - 7142*x^4 - 7912*x^5 + 3123*x^6 + 390*x^7 - 30*x^8)/((1 + x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 07 2018
A267081
Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-9, 35, -969, -14359, -279261, -4862231, -88270665, -1576950691, -28345226121, -508305487319, -9123426587229, -163697793422935, -2937543639603849, -52711355807057699, -945871877489577801, -16972948054702729111, -304567428780675699165, -5465239154667149397911
Offset: 0
Let u = 2^(1/3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u,1,1,1,...] has p(0,x) = -5 - 15 x - 6 x^2 - 9 x^3 + 3 x^5 + x^6, so that a(0) = -9.
[1,u,1,1,1,...] has p(1,x) = -11 + 45 x - 66 x^2 + 35 x^3 + 6 x^4 - 15 x^5 + 5 x^6, so that a(1) = 35;
[1,1,u,1,1,1...] has p(2,x) = 131 - 633 x + 1110 x^2 - 969 x^3 + 456 x^4 - 111 x^5 + 11 x^6, so that a(2) = -969.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2^(1/3)}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 30}]
Coefficient[t, x, 0]; (* A267078 *)
Coefficient[t, x, 1]; (* A267079 *)
Coefficient[t, x, 2]; (* A267080 *)
Coefficient[t, x, 3]; (* A267081 *)
Coefficient[t, x, 4]; (* A267082 *)
Coefficient[t, x, 5]; (* A267083 *)
Coefficient[t, x, 6]; (* A266527 *)
-
Vec((-9 + 125*x - 104*x^2 - 8179*x^3 - 9491*x^4 - 700*x^5 + 70*x^6)/((1 + x)*(1 + 7*x + x^2)*(1 - 18*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 07 2018
A267082
Coefficient of x^4 in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
0, 6, 456, 6240, 131238, 2238780, 41011296, 730283034, 13143304440, 235581102912, 4229156006790, 75876624195564, 1361636473680576, 24432987781993530, 438436202143461288, 7867390833380267040, 141174789462751501926, 2533277512666920359964
Offset: 0
Let u = 2^(1/3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u,1,1,1,...] has p(0,x) = -5 - 15 x - 6 x^2 - 9 x^3 + 3 x^5 + x^6, so that a(0) = 0.
[1,u,1,1,1,...] has p(1,x) = -11 + 45 x - 66 x^2 + 35 x^3 + 6 x^4 - 15 x^5 + 5 x^6, so that a(1) = 6;
[1,1,u,1,1,1...] has p(2,x) = 131 - 633 x + 1110 x^2 - 969 x^3 + 456 x^4 - 111 x^5 + 11 x^6, so that a(2) = 456.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2^(1/3)}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 30}]
Coefficient[t, x, 0]; (* A267078 *)
Coefficient[t, x, 1]; (* A267079 *)
Coefficient[t, x, 2]; (* A267080 *)
Coefficient[t, x, 3]; (* A267081 *)
Coefficient[t, x, 4]; (* A267082 *)
Coefficient[t, x, 5]; (* A267083 *)
Coefficient[t, x, 6]; (* A266527 *)
-
concat([0], 6*Vec((1 + 62*x - 114*x^2 + 823*x^3 - 182*x^4 - 28*x^5 + 2*x^6)/((1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)) + O(x^30))) \\ Andrew Howroyd, Mar 07 2018
A266527
Coefficient of x^6 in the minimal polynomial of the continued fraction [1^n,2^(1/3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
1, 5, 11, 131, 3421, 56209, 1049105, 18561659, 334918459, 5997328339, 107703879581, 1932077585345, 34673771913121, 622167861459451, 11164539354582251, 200338227165577379, 3594932551574173405, 64508386001097153649, 1157556438367284595889
Offset: 0
Let u = 2^(1/3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u,1,1,1,...] has p(0,x) = -5 - 15 x - 6 x^2 - 9 x^3 + 3 x^5 + x^6, so that a(0) = 1.
[1,u,1,1,1,...] has p(1,x) = -11 + 45 x - 66 x^2 + 35 x^3 + 6 x^4 - 15 x^5 + 5 x^6, so that a(1) = 5;
[1,1,u,1,1,1...] has p(2,x) = 131 - 633 x + 1110 x^2 - 969 x^3 + 456 x^4 - 111 x^5 + 11 x^6, so that a(2) = 11.
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2^(1/3)}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 30}]
Coefficient[t, x, 0]; (* A267078 *)
Coefficient[t, x, 1]; (* A267079 *)
Coefficient[t, x, 2]; (* A267080 *)
Coefficient[t, x, 3]; (* A267081 *)
Coefficient[t, x, 4]; (* A267082 *)
Coefficient[t, x, 5]; (* A267083 *)
Coefficient[t, x, 6]; (* A266527 *)
-
Vec((1 - 8*x - 158*x^2 - 272*x^3 + 2134*x^4 + 2168*x^5 - 1009*x^6 - 130*x^7 + 10*x^8)/((1 + x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)) + O(x^30)) \\ Andrew Howroyd, Mar 07 2018
Showing 1-6 of 6 results.
Comments