A267177 Irregular triangle read by rows: successive bottom and right-hand borders of the infinite square array in A072030 (which gives number of subtraction steps needed to compute GCD).
1, 2, 1, 2, 3, 3, 1, 3, 3, 4, 2, 4, 1, 4, 2, 4, 5, 4, 4, 5, 1, 5, 4, 4, 5, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 7, 5, 5, 5, 5, 7, 1, 7, 5, 5, 5, 5, 7, 8, 4, 5, 2, 5, 4, 8, 1, 8, 4, 5, 2, 5, 4, 8, 9, 6, 3, 6, 6, 3, 6, 9, 1, 9, 6, 3, 6, 6, 3, 6, 9, 10, 5, 6, 4, 2, 4, 6, 5, 10, 1, 10, 5, 6, 4, 2, 4, 6, 5
Offset: 1
Examples
The array in A072030 begins: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ... 3, 3, 1, 4, 4, 2, 5, 5, 3, 6, ... 4, 2, 4, 1, 5, 3, 5, 2, 6, 4, ... 5, 4, 4, 5, 1, 6, 5, 5, 6, 2, ... 6, 3, 2, 3, 6, 1, 7, 4, 3, 4, ... 7, 5, 5, 5, 5, 7, 1, 8, 6, 6, ... 8, 4, 5, 2, 5, 4, 8, 1, 9, 5, ... 9, 6, 3, 6, 6, 3, 6, 9, 1, 10, ... 10, 5, 6, 4, 2, 4, 6, 5, 10, 1, ... ... The successive bottom and right-hand borders are: 1, 2, 1, 2, 3, 3, 1, 3, 3, 4, 2, 4, 1, 4, 2, 4, 5, 4, 4, 5, 1, 5, 4, 4, 5, 6, 3, 2, 3, 6, 1, 6, 3, 2, 3, 6, 7, 5, 5, 5, 5, 7, 1, 7, 5, 5, 5, 5, 7, ...
Links
- R. J. Mathar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A267177 := proc(n,k) if k <= n then A072030(n,k) ; else A072030(2*n-k,n) ; end if; end proc: seq(seq(A267177(n,k),k=1..2*n-1),n=1..10) ; # R. J. Mathar, May 07 2016
-
Mathematica
A072030[n_, k_] := A072030[n, k] = Which[n < 1 || k < 1, 0, n == k, 1, n < k, A072030[k, n], True, 1+A072030[k, n-k]]; A267177[n_, k_] := If[k <= n, A072030[n, k], A072030[2n-k, n]]; Table[A267177[n, k], {n, 1, 10}, {k, 1, 2n-1}] // Flatten (* Jean-François Alcover, Apr 23 2023, after R. J. Mathar *)
-
PARI
\\ Based on Michel Marcus's program for A049834. tabl(nn) = {for (n=1, nn, for (k=1, n, a = n; b = k; r = 1; s = 0; while (r, q = a\b; r = a - b*q; s += q; a = b; b = r); print1(s, ", "); ); for (k=1, n-1, a = n; b = n-k; r = 1; s = 0; while (r, q = a\b; r = a - b*q; s += q; a = b; b = r); print1(s, ", "); ); print(); ); } tabl(12)
Comments