A267192 Column 3 of triangle in A059317 (the Pascal "Rhombus").
0, 0, 0, 1, 4, 19, 70, 261, 914, 3177, 10816, 36566, 122552, 408840, 1358032, 4497995, 14862112, 49019688, 161449208, 531152855, 1745892452, 5734722698, 18826352472, 61777432510, 202648614072, 664569581090, 2178948104572, 7143067052707, 23413795288008
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- José L. Ramírez, The Pascal Rhombus and the Generalized Grand Motzkin Paths, arXiv:1511.04577 [math.CO], 2015.
Programs
-
Maple
T:= proc(n, k) option remember; `if`(min(n, k)<0, 0, `if`(k=0, 1, T(n-1, k)+T(n-1, k-1)+T(n-1, k-2)+T(n-2, k-2))) end: a:= n-> T(n, n-3): seq(a(n), n=0..30); # Alois P. Heinz, Jan 24 2016
-
Mathematica
T[n_, k_] := T[n, k] = If[Min[n, k]<0, 0, If[k == 0, 1, T[n-1, k] + T[n-1, k-1] + T[n-1, k-2] + T[n-2, k-2]]]; a[n_] := T[n, n-3]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 23 2017, after Alois P. Heinz *)
Formula
Conjecture: +(n-2)*(n-3)*(n+3)*a(n) -n*(2*n-1)*(n-2)*a(n-1) -(n-1)*(5*n^2-10*n+18)*a(n-2) +n*(2*n-3)*(n-2)*a(n-3) +n*(n+1)*(n-5)*a(n-4)=0. - R. J. Mathar, Jul 23 2017
Extensions
More terms from Alois P. Heinz, Jan 24 2016