cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267241 Number of nX4 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.

Original entry on oeis.org

5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865, 1137631979, 6891047527, 41628865000, 250987078681, 1511105743781, 9088662549303, 54625229882746, 328144877989145, 1970524978549951
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2016

Keywords

Comments

Column 4 of A267245.

Examples

			Some solutions for n=4
..0..0..0..0....0..0..0..0....0..0..1..1....0..0..1..1....0..0..0..1
..0..0..0..0....0..0..0..1....0..0..1..1....0..1..0..1....0..1..1..0
..0..1..1..1....0..1..1..0....0..1..1..1....1..0..1..0....0..1..1..1
..1..0..1..1....0..1..1..0....1..0..1..1....1..0..1..0....0..1..1..1
		

Crossrefs

Cf. A267245.

Programs

  • Maple
    states:= select(proc(x) (x[1]=x[2] or x[5]=1) and (x[2]=x[3] or x[6]=1) and (x[3]=x[4] or x[7]=1) end proc, [seq(seq(seq(seq(seq(seq(seq([a,b,c,d,e,f,g],g=0..1),f=0..1),e=0..1),d=0..1),c=0..1),b=0..1),a=0..1)]):
    T:= Matrix(54,54,proc(i,j) local k;
      if add(states[j,k]-states[i,k],k=1..4) > 0 then return 0 fi;
      if states[j,5]>states[i,5] or states[j,6]>states[i,6] or states[j,7]>states[i,7] then return 0 fi;
      if states[i,1]>=states[i,2] and states[j,5]<> states[i,5] then return 0 fi;
      if states[i,2]>=states[i,3] and states[j,6]<> states[i,6] then return 0 fi;
      if states[i,3]>=states[i,4] and states[j,7]<> states[i,7] then return 0 fi;
    1
    end proc):
    U:= Vector(54,1):
    E[0]:= Vector(54): E[0][1]:= 1:
    for k from 1 to 25 do E[k]:= T . E[k-1] od:
    seq(U^%T . E[j], j=1..25); # Robert Israel, Sep 08 2019
  • Mathematica
    LinearRecurrence[{24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768}, {5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865}, 25] (* Jean-François Alcover, Oct 25 2022, after Robert Israel *)

Formula

Empirical: a(n) = 24*a(n-1) -246*a(n-2) +1420*a(n-3) -5121*a(n-4) +12084*a(n-5) -18944*a(n-6) +19536*a(n-7) -12720*a(n-8) +4736*a(n-9) -768*a(n-10).
Empirical formula verified (see link). - Robert Israel, Sep 08 2019