A267241 Number of nX4 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865, 1137631979, 6891047527, 41628865000, 250987078681, 1511105743781, 9088662549303, 54625229882746, 328144877989145, 1970524978549951
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0....0..0..0..0....0..0..1..1....0..0..1..1....0..0..0..1 ..0..0..0..0....0..0..0..1....0..0..1..1....0..1..0..1....0..1..1..0 ..0..1..1..1....0..1..1..0....0..1..1..1....1..0..1..0....0..1..1..1 ..1..0..1..1....0..1..1..0....1..0..1..1....1..0..1..0....0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of empirical recurrence
- Index entries for linear recurrences with constant coefficients, signature (24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768).
Crossrefs
Cf. A267245.
Programs
-
Maple
states:= select(proc(x) (x[1]=x[2] or x[5]=1) and (x[2]=x[3] or x[6]=1) and (x[3]=x[4] or x[7]=1) end proc, [seq(seq(seq(seq(seq(seq(seq([a,b,c,d,e,f,g],g=0..1),f=0..1),e=0..1),d=0..1),c=0..1),b=0..1),a=0..1)]): T:= Matrix(54,54,proc(i,j) local k; if add(states[j,k]-states[i,k],k=1..4) > 0 then return 0 fi; if states[j,5]>states[i,5] or states[j,6]>states[i,6] or states[j,7]>states[i,7] then return 0 fi; if states[i,1]>=states[i,2] and states[j,5]<> states[i,5] then return 0 fi; if states[i,2]>=states[i,3] and states[j,6]<> states[i,6] then return 0 fi; if states[i,3]>=states[i,4] and states[j,7]<> states[i,7] then return 0 fi; 1 end proc): U:= Vector(54,1): E[0]:= Vector(54): E[0][1]:= 1: for k from 1 to 25 do E[k]:= T . E[k-1] od: seq(U^%T . E[j], j=1..25); # Robert Israel, Sep 08 2019
-
Mathematica
LinearRecurrence[{24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768}, {5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865}, 25] (* Jean-François Alcover, Oct 25 2022, after Robert Israel *)
Formula
Empirical: a(n) = 24*a(n-1) -246*a(n-2) +1420*a(n-3) -5121*a(n-4) +12084*a(n-5) -18944*a(n-6) +19536*a(n-7) -12720*a(n-8) +4736*a(n-9) -768*a(n-10).
Empirical formula verified (see link). - Robert Israel, Sep 08 2019
Comments