cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267277 Zeroless primes p such that p*(product of digits of p)+(sum of digits of p) is also prime.

Original entry on oeis.org

11, 13, 17, 19, 31, 37, 43, 47, 61, 73, 79, 83, 223, 227, 263, 281, 283, 463, 643, 683, 821, 827, 881, 1117, 1231, 1259, 1291, 1321, 1361, 1367, 1433, 1471, 1543, 1567, 1583, 1597, 1619, 1637, 1657, 1699, 1723, 1741, 1753, 1777, 1933, 1951, 1973
Offset: 1

Views

Author

Emre APARI, Jan 12 2016

Keywords

Comments

Zeroless means that the decimal expansion has no digit "0", so no element of A056709 is in the sequence.
If we define a function "n*times products of digits plus sum of digits", f(n) = n*A007954(n) + A007953(n), then iterating the function starting at 217421 generates a chain of at least 4 primes: 217421 -> 24351169 -> 157795575151 -> 1522234189034803183.

Examples

			19 => 19*1*9+1+9 = 181 (is prime).
821 => 821*8*2*1+8+2+1 = 13147 (is prime).
2357 => 2357*2*3*5*7+2+3+5+7 = 494987 (is prime).
99995999 => 99995999*(9^7)*5+9*7+5 = 2391388816705223 (is prime).
		

Crossrefs

Programs

  • Maple
    isA267277 := proc(n)
        local pdgs ;
        if isprime(n) then
            pdgs := A007954(n) ;
            if pdgs <> 0 then
                isprime(n*pdgs+A007953(n)) ;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    for n from 1 to 400 do
        if isA267277(n) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Jan 16 2016
  • Mathematica
    Select[Prime@ Range@ 480, And[Last@ DigitCount@ # == 0, PrimeQ[Function[k, # Times @@ k + Total@ k]@ IntegerDigits@ #]] &] (* Michael De Vlieger, Jan 12 2016 *)