A267277 Zeroless primes p such that p*(product of digits of p)+(sum of digits of p) is also prime.
11, 13, 17, 19, 31, 37, 43, 47, 61, 73, 79, 83, 223, 227, 263, 281, 283, 463, 643, 683, 821, 827, 881, 1117, 1231, 1259, 1291, 1321, 1361, 1367, 1433, 1471, 1543, 1567, 1583, 1597, 1619, 1637, 1657, 1699, 1723, 1741, 1753, 1777, 1933, 1951, 1973
Offset: 1
Examples
19 => 19*1*9+1+9 = 181 (is prime). 821 => 821*8*2*1+8+2+1 = 13147 (is prime). 2357 => 2357*2*3*5*7+2+3+5+7 = 494987 (is prime). 99995999 => 99995999*(9^7)*5+9*7+5 = 2391388816705223 (is prime).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA267277 := proc(n) local pdgs ; if isprime(n) then pdgs := A007954(n) ; if pdgs <> 0 then isprime(n*pdgs+A007953(n)) ; else false; end if; else false; end if; end proc: for n from 1 to 400 do if isA267277(n) then printf("%d,\n",n); end if; end do: # R. J. Mathar, Jan 16 2016
-
Mathematica
Select[Prime@ Range@ 480, And[Last@ DigitCount@ # == 0, PrimeQ[Function[k, # Times @@ k + Total@ k]@ IntegerDigits@ #]] &] (* Michael De Vlieger, Jan 12 2016 *)
Comments