cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Emre APARI

Emre APARI's wiki page.

Emre APARI has authored 32 sequences. Here are the ten most recent ones:

A282565 a(n) is the largest prime p < 2^n such that p + 2^n is also prime.

Original entry on oeis.org

3, 5, 13, 29, 43, 113, 223, 509, 907, 2003, 4051, 8171, 16333, 32603, 65437, 130649, 262027, 524261, 1048507, 2097047, 4194277, 8388209, 16776481, 33554201, 67108753, 134217401, 268435273, 536869631, 1073741719, 2147483549, 4294966477, 8589934307, 17179868383
Offset: 2

Author

Emre APARI, Feb 18 2017

Keywords

Examples

			13 + 16 (2^4) = 29  (prime).
29 + 32 (2^5) = 61  (prime).
43 + 64 (2^6) = 107 (prime).
		

Crossrefs

A278693 Numbers n such that prime(n) + prime(n+1) is divisible by 2n + 1.

Original entry on oeis.org

4, 181, 6458, 6460, 40083, 40121, 10553502, 69709942, 3140421718, 3140421737, 3140421740, 3140421768, 3140421805, 3140421845
Offset: 1

Author

Emre APARI, Nov 26 2016

Keywords

Comments

The pairs of consecutive prime numbers corresponding to the terms of this sequence are 7,11; 1087,1091; 64579,64591; 64601,64609; 481001,481003; 481447,481469; 189963043,189963047; ...
The corresponding integers (prime(k) + prime(k+1))/(2*k+1) are 2, 6, 10, 10, 12, 12, 18, ...

Examples

			a(1) = 4 since prime(4) + prime(5) = 7 + 11 = 18 is divisible by 2*4 + 1 = 9.
a(2) = 181 since prime(181) + prime(182) = 1087 + 1091 = 2178 is divisible by 2*181 + 1 = 363.
a(3) = 6458 since prime(6458) + prime(6459) = 64579 + 64591 = 129170 is divisible by 2*6458 + 1 = 12917.
a(4) = 6460 since prime(6460) + prime(6461) = 64601 + 64609 = 129210 is divisible by 2*6460 + 1 = 12921.
a(5) = 40083 since prime(40083) + prime(40084) = 481001 + 481003 = 962004 is divisible by 2*40083 + 1 = 80167.
a(6) = 40121 since prime(40121) + prime(40122) = 481447 + 481469 = 962916 is divisible by 2*40121 + 1 = 80243.
a(7) = 10553502 since prime(10553502) + prime(10553503) = 189963043 + 189963047 = 379926090 is divisible by 2*10553502 + 1 = 21107005.
a(8) = 69709942 since prime(69709942) + prime(69709943) = 1394198837 + 1394198863 = 2788397700 is divisible by 2*69709942 + 1 = 139419885.
a(9) = 3140421718 since prime(3140421718) + prime(3140421719) = 75370121237 + 75370121251 = 150740242488 is divisible by 2*3140421718 + 1 = 6280843437.
a(10) = 3140421737 since prime(3140421737) + prime(3140421738) = 75370121689 + 75370121711 = 150740243400 is divisible by 2*3140421737 + 1 = 6280843475.
a(11) = 3140421740 since prime(3140421740) + prime(3140421741) = 75370121767 + 75370121777 = 150740243544 is divisible by 2*3140421740 + 1 = 6280843481.
a(12) = 3140421768 since prime(3140421768) + prime(3140421769) = 75370122439 + 75370122449 = 150740244888 is divisible by 2*3140421768 + 1 = 6280843537.
a(13) = 3140421805 since prime(3140421805) + prime(3140421806) = 75370123327 + 75370123337 = 150740246664 is divisible by 2*3140421805 + 1 = 6280843611.
a(14) = 3140421845 since prime(3140421845) + prime(3140421846) = 75370124273 + 75370124311 = 150740248584 is divisible by 2*3140421845 + 1 = 6280843691.
		

Crossrefs

Programs

  • PARI
    isok(k) = denominator((prime(k)+prime(k+1))/(2*k+1)) == 1; \\ Michel Marcus, Nov 26 2016
    
  • PARI
    n=0; p=2; forprime(q=3,1e9, n++; if((p+q)%(2*n+1)==0, print1(n", ")); p=q) \\ Charles R Greathouse IV, Nov 28 2016

Extensions

a(8)-a(14) from Charles R Greathouse IV, Nov 28 2016

A272245 Cubes of the form prime(n)+n.

Original entry on oeis.org

8, 27, 1000, 2744, 4096, 46656, 68921, 274625, 941192, 1295029, 1481544, 1906624, 14886936, 34328125, 35937000, 45882712, 50243409, 63521199, 64000000, 67917312, 76225024, 95443993, 112678587, 142236648, 143877824, 174676879, 198155287, 203297472, 216000000
Offset: 1

Author

Emre APARI, Apr 23 2016

Keywords

Comments

The cube root of the first 10 terms are: 2,3,10,14,16,36,41,65,98,109.

Examples

			prime(147) + 147 = 853 + 147 = 1000; which is 10^3.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {for (n=1, nn, if (ispower(p=n+prime(n), 3), print1(p, ", ")););} \\ Michel Marcus, Apr 23 2016

Formula

a(n) = A014688(A076147(n)). - Michel Marcus, Apr 23 2016

Extensions

a(20)-a(29) from Giovanni Resta, Apr 23 2016

A271575 Primes p such that p+10, p+100 and p+1000 are all prime.

Original entry on oeis.org

13, 31, 97, 163, 181, 283, 409, 499, 709, 787, 811, 877, 1087, 1399, 1423, 1609, 1777, 1801, 1879, 2347, 2677, 2719, 3457, 3517, 3919, 4273, 4483, 5701, 6043, 6121, 6211, 6481, 6691, 7573, 8941, 9733, 9739, 10069, 10093, 10159, 10243, 10789, 11161, 11251, 11689, 12799, 12907
Offset: 1

Author

Emre APARI, Apr 10 2016

Keywords

Comments

Number of terms < 10^k: 0, 3, 12, 37, 159, 789, 3960, 21708, 129910, ..., . - Robert G. Wilson v, Jun 20 2018

Examples

			p=13; p+10=23 (is prime), p+100=113 (is prime), p+1000=1013 (is prime).
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(t+1000) and isprime(t+100) and isprime(t+10) and isprime(t), [seq(i,i=7..20000, 6)]); # Robert Israel, Jun 20 2018
  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[# + 10] && PrimeQ[# + 100] && PrimeQ[# + 1000] &] (* Robert Price, Apr 10 2016 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p+10) && isprime(p+100) && isprime(p+1000), print1(p, ", "))); \\ Michel Marcus, Apr 10 2016

A271549 Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.

Original entry on oeis.org

1399, 2157763, 13034041, 38208649, 38502313, 41518651, 42745111, 48154147, 49435063, 53872447, 58981513, 75194563, 83037247, 86139409, 101533963, 106287019, 140778403, 144593431, 155554237, 166083133, 166650193, 189371671, 199865893, 201738379, 224472877, 240133753, 271331773
Offset: 1

Author

Emre APARI, Apr 10 2016

Keywords

Comments

The exponents of 10 are all prime (2,3,5,7,11,13,17).

Examples

			p = 1399:
p+10^2  = 1499 (is prime).
p+10^3  = 2399 (is prime).
p+10^5  = 101399 (is prime).
p+10^7  = 10001399 (is prime).
p+10^11 = 100000001399 (is prime).
p+10^13 = 10000000001399 (is prime).
p+10^17 = 100000000000001399 (is prime).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] &&  PrimeQ[# + 10^7] && PrimeQ[# + 10^11] &&  PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* Robert Price, Apr 10 2016 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ Altug Alkan, Apr 10 2016

Extensions

More terms from Altug Alkan, Apr 10 2016

A267799 a(n) = (1 + 2^n + 3^n)/2.

Original entry on oeis.org

3, 7, 18, 49, 138, 397, 1158, 3409, 10098, 30037, 89598, 267769, 801258, 2399677, 7190838, 21556129, 64635618, 193841317, 581392878, 1743916489, 5231225178, 15692626957, 47075783718, 141223156849, 423661081938, 1270966468597, 3812865851358, 11438530445209, 34315457117898, 102946102918237
Offset: 1

Author

Emre APARI, Apr 07 2016

Keywords

Examples

			a(3) = (1 + 2^3 + 3^3)/2 = 18.
		

Crossrefs

Programs

Formula

a(n) = (A007689(n)+1)/2.
From Colin Barker, Apr 07 2016: (Start)
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3) for n>3.
G.f.: x*(3-11*x+9*x^2) / ((1-x)*(1-2*x)*(1-3*x)).
(End)
a(n) = A001550(n)/2, for n >= 1. - Altug Alkan, Apr 08 2016

A271050 Positive integer k such that k^2 = p^2 + q^2 - 1 where p and q are consecutive primes.

Original entry on oeis.org

13, 17, 37, 157, 307, 437, 1451, 6487, 60773, 421133, 1445957, 2064493, 15247789, 177075397, 16509255853, 4270704255979, 56635565799013, 124750634536736711, 628179811369719907, 81815870181890275241, 13861061749008806276269, 91566796731172246399571
Offset: 1

Author

Emre APARI, Mar 29 2016

Keywords

Comments

Prime terms of this sequence are listed in A167276. - Altug Alkan, Mar 30 2016

Examples

			         7^2 + 11^2 - 1 = 169 (13^2, k is prime),
        11^2 + 13^2 - 1 = 289 (17^2, k is prime),
        23^2 + 29^2 - 1 = 1369 (37^2, k is prime),
      109^2 + 113^2 - 1 = 24649 (157^2, k is prime),
      211^2 + 223^2 - 1 = 94249 (307^2, k is prime),
      307^2 + 311^2 - 1 = 190969 (437^2, k is semiprime),
    1021^2 + 1031^2 - 1 = 2105401 (1451^2, k is prime),
  42967^2 + 42979^2 - 1 = 3693357529 (60773^2, k is prime).
		

Crossrefs

Cf. A001248, A069484, A160054 (the corresponding primes p), A167276.

Programs

  • Mathematica
    p = 2; q = 3; lst = {}; While[p < 10^15, If[ IntegerQ@ Sqrt[p^2 + q^2 - 1], AppendTo[lst, Sqrt[p^2 + q^2 - 1]];
    Print[Sqrt[p^2 + q^2 - 1]]]; p = q; q = NextPrime@ q] (* Robert G. Wilson v, Mar 30 2016 *)
  • PARI
    list(nn) = {p = 2; forprime(q=3, nn, if (issquare(s = q^2+p^2-1), print1(sqrtint(s), ", ")); p = q;);} \\ Michel Marcus, Mar 29 2016

Extensions

More terms from Jinyuan Wang, Jan 09 2021

A270972 Primes p such that p-2, p^2-2 and p^3-2 are all prime.

Original entry on oeis.org

19, 8629, 9721, 12109, 13831, 15331, 17029, 17989, 25849, 33151, 56209, 70999, 73039, 78541, 92461, 97369, 97609, 103069, 103969, 147139, 174469, 179719, 203341, 217369, 221401, 242059, 249541, 269431, 277549, 283009, 285559, 324619, 333451, 346669, 393079, 404269, 409261, 424891, 440551, 488689
Offset: 1

Author

Emre APARI, Mar 27 2016

Keywords

Comments

Subsequence of A006512. - Altug Alkan, Mar 27 2016

Examples

			p=19; p-2 = 17 (is prime), p^2-2 = 359 (is prime), p^3-2 = 6857 (is prime).
		

Programs

  • Magma
    [p: p in PrimesUpTo(500000) | IsPrime(p-2) and IsPrime(p^2-2) and IsPrime(p^3-2)]; // Vincenzo Librandi, Mar 28 2016
  • Mathematica
    Select[Prime@ Range@ 42000, Function[k, AllTrue[k^# & /@ Range@ 3 - 2, PrimeQ]]] (* Michael De Vlieger, Mar 27 2016, Version 10 *)
  • PARI
    lista(nn) = {forprime(p=5, nn, if(isprime(p-2) && isprime(p^2-2) && isprime(p^3-2), print1(p, ", ")));} \\ Altug Alkan, Mar 27 2016
    

Extensions

More terms from Altug Alkan, Mar 27 2016

A262782 a(n) = sum_{k=1..n} 3^prime(k).

Original entry on oeis.org

9, 36, 279, 2466, 179613, 1773936, 130914099, 1293175566, 95436354393, 68725813719276, 686399210003223, 450970305101000586, 36923966682271786989, 365180934076808864616, 26953995293034312152403, 19410199662973054208949126, 14149796291401707558973760193, 141323271117050318101857059796
Offset: 1

Author

Emre APARI, Mar 24 2016

Keywords

Examples

			a(2) = 3^prime(1) + 3^prime(2) = 3^2+3^3=36.
		

Crossrefs

Cf. A057901.

Programs

  • Mathematica
    Accumulate@ Array[3^Prime@ # &, {18}] (* Michael De Vlieger, Mar 24 2016 *)
  • PARI
    a(n) = sum(k=1, n, 3^prime(k)); \\ Altug Alkan, Mar 24 2016

Extensions

More terms from Michael De Vlieger, Mar 24 2016

A262778 a(n) = 10^n + prime(n).

Original entry on oeis.org

12, 103, 1005, 10007, 100011, 1000013, 10000017, 100000019, 1000000023, 10000000029, 100000000031, 1000000000037, 10000000000041, 100000000000043, 1000000000000047, 10000000000000053, 100000000000000059, 1000000000000000061
Offset: 1

Author

Emre APARI, Mar 24 2016

Keywords

Examples

			a(4) = 10^4+7=10007.
		

Crossrefs

Programs

  • PARI
    a(n) = 10^n + prime(n); \\ Altug Alkan, Mar 24 2016