A267414 Integers k such that there exist nonnegative integers x,y,z with k! = x^3 + y^3 + z^3.
0, 1, 2, 4, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1
Keywords
Examples
0 and 1 are terms because 0! = 1! = 1 = 0^3 + 0^3 + 1^3. 2 is a term because 2! = 2 = 0^3 + 1^3 + 1^3. 4 is a term because 4! = 24 = 2^3 + 2^3 + 2^3. From _Chai Wah Wu_, Jan 18 2016: (Start) 9! = 36^3 + 52^3 + 56^3 10! = 4^3 + 96^3 + 140^3 11! = 105^3 + 222^3 + 303^3 12! = 35^3 + 309^3 + 766^3 14! = 135^3 + 3153^3 + 3822^3 15! = 1092^3 + 2040^3 + 10908^3 16! = 7644^3 + 21192^3 + 22212^3 17! = 9984^3 + 22848^3 + 69984^3 18! = 18900^3 + 54060^3 + 184080^3 19! = 131040^3 + 331200^3 + 436320^3 20! = 87490^3 + 1034430^3 + 1098440^3 21! = 59850^3 + 2072070^3 + 3481380^3 (End) 22! = 286272^3 + 8168832^3 + 8334144^3. - _Altug Alkan_, Aug 08 2020 From _Chai Wah Wu_, Aug 09 2020: (Start) 23! = 8255520^3 + 10856160^3 + 28848960^3 24! = 8648640^3 + 9918720^3 + 85216320^3 25! = 31449600^3 + 194947200^3 + 200592000^3 26! = 133526400^3 + 232377600^3 + 729590400^3 27! = 400579200^3 + 697132800^3 + 2188771200^3 28! = 745516800^3 + 3859430400^3 + 6274195200^3 29! = 6029402400^3 + 7705152000^3 + 20136664800^3 30! = 24051081600^3 + 35394105600^3 + 59154883200^3 31! = 63842385600^3 + 74054736000^3 + 196233710400^3 32! = 19948723200^3 + 392984524800^3 + 587164032000^3 33! = 757780531200^3 + 1319649408000^3 + 1812063052800^3 34! = 2423348928000^3 + 5068495555200^3 + 5322645820800^3 35! = 221937408000^3 + 1100266675200^3 + 21780043084800^3 36! = 37944351244800^3 + 43054819315200^3 + 61932511872000^3 (End) From _Altug Alkan_, Aug 15-26 2020: (Start) 37! = 24795996825600^3 + 74281492454400^3 + 237157683840000^3. 38! = 117664241587200^3 + 120627079372800^3 + 803958680448000^3. 39! = 863357752857600^3 + 953842592102400^3 + 2663078850432000^3. 40! = 2918729189376000^3 + 5087164642560000^3 + 8703942863616000^3. 41! = 7755318514944000^3 + 8120284204032000^3 + 31896357292800000^3. 42! = 89122911958080000^3 + 33781805785728000^3 + 87002517970368000^3. 43! = 122523857584128000^3 + 202407941159424000^3 + 369098064631296000^3. 44! = 259725052274688000^3 + 793899570207744000^3 + 1288734012453888000^3. 45! = 406827658382745600^3 + 1201813420282675200^3 + 4902359567603097600^3. 47! = 12321320074256793600^3 + 20307078211733913600^3 + 62859559551447859200^3. 48! = 25537325843751321600^3 + 149166695523144499200^3 + 208609080169435545600^3. 50! = 1299690649834536960000^3 + 1575788569801205760000^3 + 2896698799298304000000^3. 52! = 4714930301540659200000^3 + 30326925607072174080000^3 + 37482600824578990080000^3. 57! = 2143437030275189096448000^3 + 18952651629200785047552000^3 + 32303499916146500321280000^3. (End) From _Altug Alkan_, Mar 05-13 2021: (Start) 46! = 5577191426219212800^3 + 6443840881904025600^3 + 17169667908109516800^3. 49! = 671664000771219456000^3 + 662061074870587392000^3 + 247029110344912896000^3. 51! = 9256160466097459200000^3 + 9117812465538416640000^3 + 428071307793592320000^3. 53! = 162171341319623860224000^3 + 14768160510292180992000^3 + 18786201326150049792000^3. 54! = 545218231179130629120000^3 + 335022509605704560640000^3 + 314703105438452290560000^3. 55! = 1946744272579774187520000^3 + 1230901820453108643840000^3 + 1511561473478381445120000^3. 58! = 52226010170722243215360000^3 + 102552481007618403041280000^3 + 104144718055889686855680000^3. 59! = 496516081488480416563200000^3 + 247419327579970911805440000^3 + 104213060097975874805760000^3. (49,51,53,54,55,59 found by _Bernard Landreau_, Mar 05-10 2021) (End) From _Bernard Landreau_, Feb 10 2023: (Start) 56! = 8440722823838300835840000^3 + 1539870961334538792960000^3 + 4732343335270526976000000^3. 60! = 1954690295686184458321920000^3 + 187526160279422365040640000^3 + 945736839075280596664320000^3. 61! = 6987261145735262954225664000^3 + 5500819928796737985183744000^3 + 3511150067368879423488000^3. 62! = 28126020674003772660940800000^3 + 12303713179773215087247360000^3 + 19449735813987841779056640000^3. 63! = 106514918440099777554186240000^3 + 49252742968526796125306880000^3 + 86830960771932156207267840000^3. 64! = 426059673760399110216744960000^3 + 197010971874107184501227520000^3 + 347323843087728624829071360000^3. 65! = 1825857768347463635450265600000^3 + 1233646969650476271309619200000^3 + 656708896142403679243468800000^3. 66! = 7629164545500731715435233280000^3 + 383304147481048793646366720000^3 + 4645292541653757960968601600000^3. 67! = 32138800724565658662277939200000^3 + 3987806882839318432102809600000^3 + 14753675466796017234670387200000^3. 68! = 121268519043338230583014195200000^3 + 74635666310379772757724364800000^3 + 65491151303650959730645401600000^3. 69! = 440198819826578009858742681600000^3 + 217119306274746004582406553600000^3 + 422815083063767403026566348800000^3. (End) From _Bernard Landreau_, Apr 12 2023: (Start) 70! = 1684880479643468059918290124800000^3 + 1267939232313822071989803417600000^3 + 1727697134569562112035900620800000^3. 71! = 7869526037543841297006565785600000^3 + 4179944826601729536159999590400000^3 + 6619802079654886665835708416000000^3. 72! = 13437726338581697013357713817600000^3 + 10167574949678977741805794099200000^3 + 38654599603517743131172247961600000^3. 73! = 96869296261623898801464382586880000^3 + 80774308520159270283270497894400000^3 + 144769602970826932947390114693120000^3. 74! = 649373800890254088606178494873600000^3 + 363407978539450964422332584755200000^3 + 207722030872866958396078844313600000^3. 75! = 2347486647113944742227212238848000000^3 + 2199783184771995658848232636416000000^3 + 1070862876804260107568106602496000000^3. 76! = 12262054139494209011130556907520000000^3 + 2762109848253646350901295382528000000^3 + 2746796636906395254645335359488000000^3. 77! = 47421174895780818749100971655168000000^3 + 18679208068237422355741320413184000000^3 + 31756770658228697228286202871808000000^3. 78! = 141193533844368458064892797124608000000^3 + 108335094312749634096990256889856000000^3 + 193437233894764827340173357613056000000^3. 79! = 897795952124597047877074078334976000000^3 + 151955762572905091739065815367680000000^3 + 551184446076431732583718393774080000000^3. 80! = 3554290394480645556188266337402880000000^3 + 1989394527958598219192394328571904000000^3 + 2658759141945971588173630544019456000000^3. (End)
Links
- Jean-Marc Deshouillers, François Hennecart, and Bernard Landreau, On the density of sums of three cubes, ANTS-VII (2006), pp. 141-155.
Programs
-
Maple
isA267414 := proc(n) local nf,x,y ; nf := n! ; for x from 0 do if 3*x^3 > nf then return false; end if; for y from x do if x^3+2*y^3 > nf then break; end if; if isA000578(nf-x^3-y^3) then return true; end if; end do: end do: end proc: for n from 0 to 1000 do if isA267414(n) then print(n) ; end if; end do: # R. J. Mathar, Jan 23 2016
Extensions
a(51)-a(64) from Bernard Landreau, Feb 10 2023
a(65)-a(75) from Bernard Landreau, Apr 12 2023
Comments