cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267436 Number of self-inverse permutations of [2n] with longest increasing subsequence of length n.

Original entry on oeis.org

1, 1, 5, 31, 265, 2446, 26069, 294386, 3628517, 46938514, 645978814, 9265791393, 139408562319, 2174338555026, 35259402634616, 590187761512336, 10209739522685893, 181678453872654154, 3326776921054665350, 62485419303819431072, 1203772979032614462448
Offset: 0

Views

Author

Alois P. Heinz, Jan 15 2016

Keywords

Comments

Also the number of 2n-length words w over n-ary alphabet {a1,a2,...,an} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,an) >= 1, where #(z,x) counts the letters x in word z. The a(2) = 5 words of length 4 over alphabet {a,b} are: aaab, aaba, abaa, aabb, abab.

Examples

			a(2) = 5: 1432, 2143, 3214, 3412, 4231.
		

Crossrefs

Programs

  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
        add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), add(
                    g(n-i*j, i-1, [l[], i$j]), j=0..n/i)):
    a:= n-> g(n$2, [n]):
    seq(a(n), n=0..25);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
    a[n_] := g[n, n, {n}];
    a /@ Range[0, 25] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)

Formula

a(n) = A047884(2n,n).