cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267459 Total number of ON (black) cells after n iterations of the "Rule 133" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 2, 3, 4, 7, 10, 15, 20, 27, 34, 43, 52, 63, 74, 87, 100, 115, 130, 147, 164, 183, 202, 223, 244, 267, 290, 315, 340, 367, 394, 423, 452, 483, 514, 547, 580, 615, 650, 687, 724, 763, 802, 843, 884, 927, 970, 1015, 1060, 1107, 1154, 1203, 1252, 1303, 1354
Offset: 0

Views

Author

Robert Price, Jan 15 2016

Keywords

Comments

Identical to A105343(n-1) for n > 1. - Guenther Schrack, Jun 01 2018

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267423.

Programs

  • Mathematica
    rule=133; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)

Formula

Conjectures from Colin Barker, Jan 16 2016 and Apr 17 2019: (Start)
a(n) = (2*n^2 - 4*n + (-1)^n + 11)/4 for n > 0.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 4.
G.f.: (1-x^2+2*x^4) / ((1-x)^3*(1+x)).
(End)