cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105343 Elements of even index in the sequence gives A005893, points on surface of tetrahedron: 2n^2 + 2 for n > 1.

Original entry on oeis.org

1, 3, 4, 7, 10, 15, 20, 27, 34, 43, 52, 63, 74, 87, 100, 115, 130, 147, 164, 183, 202, 223, 244, 267, 290, 315, 340, 367, 394, 423, 452, 483, 514, 547, 580, 615, 650, 687, 724, 763, 802, 843, 884, 927, 970, 1015, 1060, 1107, 1154, 1203, 1252, 1303, 1354, 1407
Offset: 0

Views

Author

Creighton Dement, Apr 30 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 2jesforrokseq[E*F*sig(E)] with E = + .5i' + .5j' + .5'ki' + .5'kj', F the sum of all floretion basis vectors and "sig" the swap-operator. RokType: Y[15] = Y[15] + Math.signum(Y[15])*p (internal program code)
May be seen as the jesforrok-transform of the zero-sequence (A000004) with respect to the floretion given in the program code.
Identical to A267459(n+1) for n > 0. - Guenther Schrack, Jun 01 2018

Examples

			G.f. = 1 + 3*x + 4*x^2 + 7*x^3 + 10*x^4 + 15*x^5 + 20*x^6 + 27*x^7 + ... - _Michael Somos_, Jun 26 2018
		

Crossrefs

Programs

  • Magma
    [1] cat [(2*n^2 + 9 - (-1)^n) div 4: n in [1..60]]; // Vincenzo Librandi, Oct 10 2011
    
  • Mathematica
    Join[{1}, LinearRecurrence[{2, 0, -2, 1}, {3, 4, 7, 10}, 60]] (* Jean-François Alcover, Nov 13 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, (2*n^2 + 10)\4)}; /* Michael Somos, Jun 26 2018 */

Formula

G.f.: (1 + x - 2*x^2 + x^3 + x^4)/((x+1)*(1-x)^3); a(n+2) - 2*a(n+1) + a(n) = (-1)^(n+1)*A084099(n).
a(n) = (1/4)*(2*n^2 + 9 - (-1)^n ), n>1. - Ralf Stephan, Jun 01 2007
Sum_{n>=0} 1/a(n) = 3/4 + tanh(sqrt(5)*Pi/2)*Pi/(2*sqrt(5)) + coth(Pi)*Pi/4. - Amiram Eldar, Sep 16 2022

A330357 a(n) = (2*n^2 + 9 - (-1)^n)/4.

Original entry on oeis.org

2, 3, 4, 7, 10, 15, 20, 27, 34, 43, 52, 63, 74, 87, 100, 115, 130, 147, 164, 183, 202, 223, 244, 267, 290, 315, 340, 367, 394, 423, 452, 483, 514, 547, 580, 615, 650, 687, 724, 763, 802, 843, 884, 927, 970, 1015, 1060, 1107, 1154, 1203, 1252, 1303, 1354, 1407
Offset: 0

Views

Author

Michael Somos, Dec 11 2019

Keywords

Examples

			G.f. = 2 + 3*x + 4*x^2 + 7*x^3 + 10*x^4 + 15*x^5 + 20*x^6 + 27*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[(2 n^2+9-(-1)^n)/4,{n,0,60}] (* or *) LinearRecurrence[{2,0,-2,1},{2,3,4,7},60] (* Harvey P. Dale, Apr 19 2023 *)
  • PARI
    {a(n) = (2*n^2 + 9 - (-1)^n)/4};

Formula

G.f.: (2 - x - 2*x^2 + 3*x^3)/(1 - 2*x + 2*x^3 - x^4) = (2 - x - 2*x^2 + 3*x^3)/((1 - x)^2 * (1 - x^2)).
a(n) = a(-n) for all n in Z. a(n) = A105343(n) if n>=1.

Extensions

Previous Mathematica program adjusted by Harvey P. Dale, Apr 19 2023
Showing 1-2 of 2 results.