A267482
Triangle of coefficients of Gaussian polynomials [2n+1,1]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=n.
Original entry on oeis.org
1, 1, 1, -1, 1, 1, -1, -2, 1, 1, 1, -2, -3, 1, 1, 1, 3, -3, -4, 1, 1, -1, 3, 6, -4, -5, 1, 1, -1, -4, 6, 10, -5, -6, 1, 1, 1, -4, -10, 10, 15, -6, -7, 1, 1, 1, 5, -10, -20, 15, 21, -7, -8, 1, 1
Offset: 0
Triangle begins:
1;
1, 1;
-1, 1, 1;
-1, -2, 1, 1;
1, -2, -3, 1, 1;
1, 3, -3, -4, 1, 1;
-1, 3, 6, -4, -5, 1, 1;
-1, -4, 6, 10, -5, -6, 1, 1;
1, -4, -10, 10, 15, -6, -7, 1, 1;
1, 5, -10, -20, 15, 21, -7, -8, 1, 1;
- Stephen O'Sullivan, Table of n, a(n) for n = 0..495
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2016-2017. Definition 6.for polynomials P_m(s).
- Stephen O'Sullivan, A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics, 300 (2015), 665-678.
- Wikipedia, Gaussian binomial coefficients.
- Index entries for sequences related to Chebyshev polynomials.
-
A267482 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n),t))): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267482(n, k), k = 0 .. n), n = 0 .. 20);
-
row[n_] := D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n}], t] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Jan 16 2016 *)
-
T(n,k) = (-1)^((n-k)\2)*binomial((n+k)\2, k); \\François Marques, Sep 28 2021
A267120
Triangle of coefficients of Gaussian polynomials [2n+3,3]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=3n.
Original entry on oeis.org
1, 0, -1, 1, 1, -1, 0, 5, -2, -4, 1, 1, 0, 2, -2, -15, 7, 17, -5, -7, 1, 1, 1, 0, -15, 6, 53, -23, -67, 22, 38, -8, -10, 1, 1, 0, -3, 3, 55, -28, -189, 81, 261, -90, -182, 46, 68, -11, -13, 1, 1, -1, 0, 30, -12, -229, 106, 691, -292, -1010, 359, 817, -229, -387, 79, 107, -14, -16, 1, 1
Offset: 0
The irregular triangle a(n, k) begins:
n/k 0 1 2 3 4 5 6 7 8 9 10 11 12
0: 1
1: 0 -1 1 1
2: -1 0 5 -2 -4 1 1
3: 0 2 -2 -15 7 17 -5 -7 1 1
4: 1 0 -15 6 53 -23 -67 22 38 -8 -10 1 1
...
Row n=5: 0 -3 3 55 -28 -189 81 261 -90 -182 46 68 -11 -13 1 1;
Row n=6: -1 0 30 -12 -229 106 691 -292 -1010 359 817 -229 -387 79 107 -14 -16 1 1.
Row n=7: 0 4 -4 -134 70 896 -416 -2561 1073 3903 -1415 -3529 1057 1991 -467 -709 121 155 -17 -19 1 1.
... Reformatted and extended. - _Wolfdieter Lang_, Feb 13 2016
-
A267120 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+1),t$3)/3!)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267120(n, k), k = 0 .. 3*n), n = 0 .. 20);
# More efficient:
N:= 20: # to get rows 0 to N
P[0]:= (1+t)*(t^2 + t*x + 1):
B[0]:= 1:
for n from 1 to N do
P[n]:= expand(series(P[n-1]*(1+t^2+2*t*orthopoly[T](n+1,x/2)),t,4));
B[n]:= coeff(P[n],t,3);
od:
seq(seq(coeff(B[n],x,j),j=0..3*n),n=0..N); # Robert Israel, Jan 15 2016
-
row[n_] := 1/3! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 3}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Jan 16 2016 *)
A267483
Triangle of coefficients of Gaussian polynomials [2n+3,2]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=2n+1.
Original entry on oeis.org
1, 1, 0, -1, 1, 1, 1, 2, -2, -3, 1, 1, 0, -2, 4, 7, -4, -5, 1, 1, 1, 3, -6, -13, 11, 16, -6, -7, 1, 1, 0, -3, 9, 22, -24, -40, 22, 29, -8, -9, 1, 1, 1, 4, -12, -34, 46, 86, -62, -91, 37, 46, -10, -11, 1, 1, 0, -4, 16, 50, -80, -166, 148, 239, -128, -174, 56, 67, -12, -13, 1, 1, 1, 5, -20, -70, 130, 296, -314, -553, 367, 541, -230, -297, 79, 92, -14, -15, 1, 1
Offset: 0
1,1;
0,-1,1,1;
1,2,-2,-3,1,1;
0,-2,4,7,-4,-5,1,1;
1,3,-6,-13,11,16,-6,-7,1,1;
0,-3,9,22,-24,-40,22,29,-8,-9,1,1;
1,4,-12,-34,46,86,-62,-91,37,46,-10,-11,1,1;
0,-4,16,50,-80,-166,148,239,-128,-174,56,67,-12,-13,1,1;
1,5,-20,-70,130,296,-314,-553,367,541,-230,-297,79,92,-14,-15,1,1;
-
A267483 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+1),t$2)/2)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267483(n, k), k = 0 .. 2*n+1), n = 0 .. 20);
# More efficient:
N:= 20: # to get rows 0 to N
P[0]:= (1+t)*(t^2 + t*x + 1):
B[0]:= 1+x:
for n from 1 to N do
P[n]:= expand(series(P[n-1]*(1+t^2+2*t*orthopoly[T](n+1,x/2)),t,3));
B[n]:= coeff(P[n],t,2);
od:
seq(seq(coeff(B[n],x,j),j=0..2*n+1),n=0..N); # From A267120 entry by Robert Israel
-
row[n_] := 1/2! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 2}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* From A267120 entry by Jean-François Alcover *)
A267485
Triangle of coefficients of Gaussian polynomials [2n+5,5]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=5n.
Original entry on oeis.org
1, 1, 2, -2, -3, 1, 1, -2, 2, 17, -9, -32, 12, 24, -6, -8, 1, 1, -2, -6, 25, 71, -80, -218, 126, 284, -106, -190, 48, 69, -11, -13, 1, 1, 3, -6, -70, 101, 506, -453, -1592, 980, 2658, -1201, -2608, 886, 1581, -400, -600, 108, 139, -16, -18, 1, 1, 3, 12, -88, -334, 779, 2774, -3226, -10389, 7709, 21620, -11608, -27865, 11496, 23591, -7645, -13512, 3427, 5276, -1020, -1385, 193, 234, -21, -23, 1, 1
Offset: 0
1;
1,2,-2,-3,1,1;
-2,2,17,-9,-32,12,24,-6,-8,1,1;
-2,-6,25,71,-80,-218,126,284,-106,-190,48,69,-11,-13,1,1;
-
A267485 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+2),t$5)/5!)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267485(n, k), k = 0 .. 5*n), n = 0 .. 5);
-
row[n_] := 1/5! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 5}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* From A267120 entry by Jean-François Alcover *)
A267486
Triangle of coefficients of Gaussian polynomials [2n+7,6]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=6n+3.
Original entry on oeis.org
-1, -2, 1, 1, 0, 2, -2, -15, 7, 17, -5, -7, 1, 1, -2, -6, 25, 71, -80, -218, 126, 284, -106, -190, 48, 69, -11, -13, 1, 1, 0, 6, -12, -137, 196, 945, -811, -2745, 1602, 4163, -1780, -3711, 1193, 2059, -493, -722, 123, 156, -17, -19, 1, 1, -3, -12, 94, 358, -952, -3430, 4699, 15615, -13467, -39946, 24494, 63168, -29535, -65638, 24206, 46512, -13652, -22891, 5294, 7834, -1386, -1831, 234, 279, -23, -25, 1, 1
Offset: 0
-1,-2,1,1;
0,2,-2,-15,7,17,-5,-7,1,1;
-2,-6,25,71,-80,-218,126,284,-106,-190,48,69,-11,-13,1,1;
-
A267486 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+3),t$6)/6!)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267486(n, k), k = 0 .. 6*n+3), n = 0 .. 20);
-
row[n_] := 1/6! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 6}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* From A267120 entry by Jean-François Alcover *)
Showing 1-5 of 5 results.
Comments