A267495 Autobiographical numbers in base 7: numbers which are fixed or belong to a cycle under the operator T.
22, 10213223, 10311233, 10313314, 10313315, 10313316, 21322314, 21322315, 21322316, 31123314, 31123315, 31123316, 31331415, 31331416, 31331516, 1031223314, 1031223315, 1031223316, 3122331415, 3122331416, 3122331516, 103142132415, 104122232415, 103142132416, 104122232416, 314213241516, 412223241516, 1011112131415, 1011112131416, 1011112131516, 1011112141516, 1011113141516, 1111213141516, 10414213142516, 10413223241516, 10512223142516, 10512213341516, 101112213141516
Offset: 1
Examples
10213223 contains one 0, two 1's, three 2's and two 3's, so T(10213223) = 1 0 2 1 3 2 2 3, and this is fixed under T. 103142132415 and 104122232415 belong to the cycle of length 2, so T(T(103142132415)) = T(1 0 4 1 2 2 2 3 2 4 1 5) = 1 0 3 1 4 2 1 3 2 4 1 5.
References
- Antonia Münchenbach and Nicole Anton George, "Eine Abwandlung der Conway-Folge", contribution to "Jugend forscht" 2016, 2016
Links
- Andre Kowacs, Studies on the Pea Pattern Sequence, arXiv:1708.06452 [math.HO], 2017.
Comments