A267505 Primes p such that p-1 is squarefree and all prime divisors of p-1 other than 13 are also in the sequence.
2, 3, 7, 43, 79, 547, 3319, 6163, 36979, 42667, 258847, 1553119, 1573207, 1834639, 1854763, 11131927, 20224159, 20451679, 124027567, 141569107, 141588763, 467477683, 1840398379, 3278780359, 5276533183, 6089163523, 6155955079, 11168428363, 11185512199, 31655671459
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
fa = FactorInteger; is[2, p_] = True; is[2, p_]; is[n_, p_] := PrimeQ[n] && MoebiusMu[n - 1] ≠ 0 && Union@Table[is[fa[n - 1][[i, 1]], p] || fa[n - 1][[ i, 1]] == p , {i, Length[fa[n - 1]]}] == {True}; Select[Prime[Range[100000]], is[#, 13] &]
-
PARI
leastdiv(v, pred, inf)={ \\ finds least divisor d satisfying pred(d) && d>=inf my(recurse(k,d,lim)= if(d >= lim, lim, if(d>=inf && pred(d), d, k++; if(k<=#v, lim=self()(k, d*v[k], lim); self()(k, d, lim), lim)))); my(stop=vecprod(v), lim=inf, m=4); while(lim<=stop, lim*=m; my(d=recurse(0,1,lim)); if(d
isprime(d+1), S[#S]); if(t==oo, break); t++; print1(t, ", "))} \\ Andrew Howroyd, Nov 13 2018
Extensions
Terms a(16) and beyond from Andrew Howroyd, Nov 13 2018
Comments