A267532 Number of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length < n.
0, 0, 1, 43, 1879, 102011, 7235651, 674641325, 81537026047, 12498099730471, 2375632826877259, 548818073236649129, 151476182218777630655, 49229890784448694885163, 18608906461974462064310179, 8094874797394331233877338741, 4015057931973886657462193434111
Offset: 0
Keywords
Examples
a(2) = 1: 2211. a(3) = 43: 113322, 131322, 133122, 133212, 133221, 211332, 213132, 213312, 213321, 221133, 221313, 221331, 223113, 223131, 223311, 231132, 231312, 231321, 232113, 232131, 232311, 233112, 233121, 233211, 311322, 313122, 313212, 313221, 321132, 321312, 321321, 322113, 322131, 322311, 323112, 323121, 323211, 331122, 331212, 331221, 332112, 332121, 332211.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1], ( (n^3+n^2-7*n+4)*b(n-1)-2*(2*n-3)*(n-1)^3*b(n-2))/(n-2)) end: a:= n-> (2*n)!/(2^n)-b(n): seq(a(n), n=0..20);
Comments