cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267539 Decimal representation of the middle column of the "Rule 143" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 6, 12, 25, 51, 103, 207, 415, 831, 1663, 3327, 6655, 13311, 26623, 53247, 106495, 212991, 425983, 851967, 1703935, 3407871, 6815743, 13631487, 27262975, 54525951, 109051903, 218103807, 436207615, 872415231, 1744830463, 3489660927, 6979321855
Offset: 0

Views

Author

Robert Price, Jan 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    rule=143; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* keep only middle cell from each row *) Table[FromDigits[Take[mc,k],2],{k,1,rows}]  (* binary representation of middle column *)
  • PARI
    a(n) = bitneg(3<<(n-3),n+1); \\ Kevin Ryde, Apr 15 2022

Formula

Conjectures from Colin Barker, Jan 17 2016 and Apr 20 2019: (Start)
a(n) = 3*a(n-1)-2*a(n-2) for n > 4. [n range correction by Karl V. Keller, Jr., Apr 14 2022]
G.f.: (1-x^2+x^4) / ((1-x)*(1-2*x)).
(End)
{1,3,6} followed by A198274 (conjectured). - Robert Price, Jan 17 2016