cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267610 Total number of OFF (white) cells after n iterations of the "Rule 182" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

0, 0, 2, 2, 4, 6, 12, 12, 14, 16, 22, 24, 30, 36, 50, 50, 52, 54, 60, 62, 68, 74, 88, 90, 96, 102, 116, 122, 136, 150, 180, 180, 182, 184, 190, 192, 198, 204, 218, 220, 226, 232, 246, 252, 266, 280, 310, 312, 318, 324, 338, 344, 358, 372, 402, 408, 422, 436
Offset: 0

Views

Author

Robert Price, Jan 18 2016

Keywords

Comments

From Gus Wiseman, Mar 30 2019: (Start)
It appears that a(n) is also the number of increasing binary-containment pairs of distinct positive integers up to n + 1. A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second. For example, the a(2) = 2 through a(8) = 14 pairs are:
{1,3} {1,3} {1,3} {1,3} {1,3} {1,3} {1,3}
{2,3} {2,3} {1,5} {1,5} {1,5} {1,5} {1,5}
{2,3} {2,3} {1,7} {1,7} {1,7}
{4,5} {2,6} {2,3} {2,3} {1,9}
{4,5} {2,6} {2,6} {2,3}
{4,6} {2,7} {2,7} {2,6}
{3,7} {3,7} {2,7}
{4,5} {4,5} {3,7}
{4,6} {4,6} {4,5}
{4,7} {4,7} {4,6}
{5,7} {5,7} {4,7}
{6,7} {6,7} {5,7}
{6,7}
{8,9}
(End)

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=182; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) nwc=Table[Length[catri[[k]]]-nbc[[k]],{k,1,rows}]; (* Number of White cells in stage n *) Table[Total[Take[nwc,k]],{k,1,rows}] (* Number of White cells through stage n *)

Formula

Conjecture: a(n) = A267700(n) - n. - Gus Wiseman, Mar 30 2019
G.f.: (1/x)*(A(x)/x - (x+1)/(1-x)^2) where A(x) is the g.f. for A006046 (conjectured). - John Tyler Rascoe, Jul 08 2024