cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267623 Binary representation of the middle column of the "Rule 187" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 101, 1011, 10111, 101111, 1011111, 10111111, 101111111, 1011111111, 10111111111, 101111111111, 1011111111111, 10111111111111, 101111111111111, 1011111111111111, 10111111111111111, 101111111111111111, 1011111111111111111, 10111111111111111111
Offset: 0

Views

Author

Robert Price, Jan 18 2016

Keywords

Comments

Also, The binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283508.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Maple
    # Rule 187: value in generation r and column c, where c=0 is the central one
    r187 := proc(r::integer,c::integer)
        option remember;
        local up ;
        if r = 0 then
            if c = 0 then
                1;
            else
                0;
            end if;
        else
            # previous 3 bits
            [procname(r-1,c+1),procname(r-1,c),procname(r-1,c-1)] ;
            up := op(3,%)+2*op(2,%)+4*op(1,%) ;
            # rule 187 = 10111011_2: {6,2}->0, all others ->1
            if up in {6,2} then
                0;
            else
                1 ;
            end if;
        end if;
    end proc:
    A267623 := proc(n)
        b := [seq(r187(r,0),r=0..n)] ;
        add(op(-i,b)*2^(i-1),i=1..nops(b)) ;
        A007088(%) ;
    end proc:
    smax := 30 ;
    L := [seq(A267623(n),n=0..smax)] ; # R. J. Mathar, Apr 12 2019
  • Mathematica
    rule=187; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)

Formula

Conjectures from Colin Barker, Jan 19 2016 and Apr 16 2019: (Start)
a(n) = 11*a(n-1)-10*a(n-2) for n>2.
G.f.: (1-x+x^2) / ((1-x)*(1-10*x)).
(End)
Empirical: a(n) = (91*10^n - 10) / 90 for n>0. - Colin Barker, Mar 10 2017
It also appears that a(n) = floor(91*10^n/90). - Karl V. Keller, Jr., May 28 2022

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022