A267623 Binary representation of the middle column of the "Rule 187" elementary cellular automaton starting with a single ON (black) cell.
1, 10, 101, 1011, 10111, 101111, 1011111, 10111111, 101111111, 1011111111, 10111111111, 101111111111, 1011111111111, 10111111111111, 101111111111111, 1011111111111111, 10111111111111111, 101111111111111111, 1011111111111111111, 10111111111111111111
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Programs
-
Maple
# Rule 187: value in generation r and column c, where c=0 is the central one r187 := proc(r::integer,c::integer) option remember; local up ; if r = 0 then if c = 0 then 1; else 0; end if; else # previous 3 bits [procname(r-1,c+1),procname(r-1,c),procname(r-1,c-1)] ; up := op(3,%)+2*op(2,%)+4*op(1,%) ; # rule 187 = 10111011_2: {6,2}->0, all others ->1 if up in {6,2} then 0; else 1 ; end if; end if; end proc: A267623 := proc(n) b := [seq(r187(r,0),r=0..n)] ; add(op(-i,b)*2^(i-1),i=1..nops(b)) ; A007088(%) ; end proc: smax := 30 ; L := [seq(A267623(n),n=0..smax)] ; # R. J. Mathar, Apr 12 2019
-
Mathematica
rule=187; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}] (* Binary Representation of Middle Column *)
Formula
Conjectures from Colin Barker, Jan 19 2016 and Apr 16 2019: (Start)
a(n) = 11*a(n-1)-10*a(n-2) for n>2.
G.f.: (1-x+x^2) / ((1-x)*(1-10*x)).
(End)
Empirical: a(n) = (91*10^n - 10) / 90 for n>0. - Colin Barker, Mar 10 2017
It also appears that a(n) = floor(91*10^n/90). - Karl V. Keller, Jr., May 28 2022
Extensions
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022
Comments