A267702 Numbers that are the sum of 3 nonzero squares (A000408) and the sum of 2 positive cubes (A003325).
9, 35, 54, 65, 72, 91, 126, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 370, 432, 468, 513, 539, 576, 637, 686, 728, 730, 737, 756, 793, 854, 945, 1001, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1358, 1395, 1456, 1458, 1512, 1547, 1674, 1729, 1736, 1755, 1843, 1853
Offset: 1
Keywords
Examples
9 is a term because 9 = 1^3 + 2^3 = 1^2 + 2^2 + 2^2. 35 is a term because 35 = 2^3 + 3^3 = 1^2 + 3^2 + 5^2. 54 is a term because 54 = 3^3 + 3^3 = 3^2 + 3^2 + 6^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..3649
Programs
-
Maple
N:= 1000: # to get all terms <= N S3:= {seq(seq(seq(a^2+b^2+c^2, c = b .. floor(sqrt(N-a^2-b^2))), b=a .. floor(sqrt((N-a^2)/2))), a = 1 .. floor(sqrt(N/3)))}: C2:= {seq(seq(a^3+b^3, b = a .. floor((N-a^3)^(1/3))),a = 1 .. floor((N/2)^(1/3)))}: sort(convert(S3 intersect C2, list)); # Robert Israel, Jan 25 2016
-
PARI
isA000408(n) = {my(a, b); a=1; while(a^2+1
A003325(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0; for(n=3, 1e4, if(isA000408(n) && isA003325(n), print1(n, ", ")));
Comments