cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267709 Number of partitions of pentagonal numbers.

Original entry on oeis.org

1, 1, 7, 77, 1002, 14883, 239943, 4087968, 72533807, 1327710076, 24908858009, 476715857290, 9275102575355, 182973889854026, 3652430836071053, 73653287861850339, 1498478743590581081, 30724985147095051099, 634350763653787028583, 13177726323474524612308
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2016

Keywords

Examples

			a(2) = 7, because second pentagonal number is a 5 and 5 can be partitioned in 7 distinct ways: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 3 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[n ((3 n - 1)/2)], {n, 0, 19}]
  • PARI
    a(n)=numbpart(n*(3*n-1)/2) \\ Charles R Greathouse IV, Jul 26 2016
    
  • Python
    from sympy.ntheory import npartitions
    print([npartitions(n*(3*n - 1)//2) for n in range(51)]) # Indranil Ghosh, Apr 11 2017

Formula

a(n) = A000041(A000326(n)).
a(n) ~ exp((Pi*sqrt(n*(3*n - 1)))/sqrt(3))/(2*sqrt(3)*n*(3*n - 1)).
a(n) = [x^(n*(3*n-1)/2)] Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017