cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267811 Binary representation of the n-th iteration of the "Rule 217" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 1, 11011, 1110111, 111101111, 11111011111, 1111110111111, 111111101111111, 11111111011111111, 1111111110111111111, 111111111101111111111, 11111111111011111111111, 1111111111110111111111111, 111111111111101111111111111, 11111111111111011111111111111
Offset: 0

Views

Author

Robert Price, Jan 20 2016

Keywords

Comments

Conjectures from Barker confirmed by later formula. - Ray Chandler, Aug 09 2025

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=217; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}]   (* Binary Representation of Rows *)

Formula

From Colin Barker, Jan 22 2016 and Apr 20 2019: (Start)
a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3) for n>4.
G.f.: (1-110*x+12010*x^2-112000*x^3+100000*x^4) / ((1-x)*(1-10*x)*(1-100*x)).
(End)
a(n) = A138148(n) for n > 1. - Ray Chandler, Aug 09 2025