A267823 Least k such that primorial(n) divides binomial(2k,k).
1, 2, 8, 18, 18, 20, 77, 128, 128, 202, 202, 545, 611, 771, 978, 983, 983, 1625, 2441, 2481, 2481, 2995, 3054, 3284, 3284, 3284, 3284, 3284, 5534, 5534, 5534, 8355, 8355, 10558, 10558, 10558, 45416, 45416, 45416, 45416, 45416, 45416, 45416
Offset: 1
Keywords
Examples
C(16,8) is divisible by primorial(3) = 2*3*5 = 30, but C(2k,k) is not divisible by 30 for k < 8, so a(3) = 8.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..150
- Wikipedia, Lucas' theorem
- Wikipedia, Kummer's theorem
Programs
-
Mathematica
T = Range[100000]; L = {}; n = 1; While[Length[T] > 0, L = Append[L, First[T]]; T = Select[T, Mod[Binomial[2 #, #], Prime[n + 1]] == 0 &]; n++]; L
-
PARI
a(n) = {my(prn = prod(k=1, n, prime(k)), k = 1); while(binomial(2*k, k) % prn, k++); k;} \\ Michel Marcus, Jan 28 2016
Comments