A267861 Number of ways to write n as 2*t + u^4 + v^4 + 2*w^4 + 3*x^4 + 4*y^4 + 6*z^4, where t is 0 or 1, and u, v, w, x, y, z are nonnegative integers with u <= v and v > 0.
1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 4, 3, 3, 4, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 3, 3, 2, 4, 2, 4, 4, 5, 5, 6, 5, 5, 6, 4, 4, 3, 3, 2, 4, 2, 4, 4, 4, 5, 6, 5, 6, 6, 4, 4, 4, 3, 2, 4, 2, 4, 5, 6, 5, 8
Offset: 1
Keywords
Examples
a(111) = 1 since 111 = 2*1 + 2^4 + 3^4 + 2*1^4 + 3*0^4 + 4*1^4 + 6*1^4. a(240) = 1 since 240 = 2*0 + 2^4 + 2^4 + 2*0^4 + 3*2^4 + 4*2^4 + 6*2^4. a(1776) = 1 since 1776 = 2*0 + 4^4 + 5^4 + 2*3^4 + 3*3^4 + 4*1^4 + 6*3^4. a(2175) = 1 since 2175 = 2*1 + 0^4 + 4^4 + 2*2^4 + 3*5^4 + 4*1^4 + 6*1^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Upgrade Waring's Problem, a message to Number Theory Mailing List, April 2, 2016.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Programs
-
Mathematica
QQ[n_]:=QQ[n]=n>0&&IntegerQ[n^(1/4)] Do[r=0;Do[If[QQ[n-2t-6*z^4-4y^4-3x^4-2w^4-u^4],r=r+1],{t,0,Min[1,n/2]},{z,0,((n-2t^8)/6)^(1/4)},{y,0,((n-2t-6z^4)/4)^(1/4)},{x,0,((n-2t-6z^4-4y^4)/3)^(1/4)}, {w,0,((n-2t-6z^4-4y^4-3x^4)/2)^(1/4)},{u,0,((n-2t-6z^4-4y^4-3x^4-2w^4)/2)^(1/4)}];Print[n," ",r];Continue,{n,1,70}]
Comments