A267958 4 times A042965.
0, 4, 12, 16, 20, 28, 32, 36, 44, 48, 52, 60, 64, 68, 76, 80, 84, 92, 96, 100, 108, 112, 116, 124, 128, 132, 140, 144, 148, 156, 160, 164, 172, 176, 180, 188, 192, 196, 204, 208, 212, 220, 224, 228, 236, 240, 244, 252, 256, 260, 268, 272, 276, 284, 288, 292, 300, 304
Offset: 1
Examples
(2*0)^2 - (2*0)^2 = 0, (2*1)^2 - (2*0)^2 = 4, (2*2)^2 - (2*1)^2 = 12, (2*2)^2 - (2*0)^2 = 16, (2*3)^2 - (2*2)^2 = 20, ...
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Maple
a := proc(n) option remember; if n = 1 then 0 elif n = 2 then 4 elif n = 3 then 12 else a(floor((1/2)*n)) + a(1+ceil((1/2)*n)) end if; end proc: seq(a(n), n = 1..50); # Peter Bala, Aug 03 2022
-
Python
def DifferenceOfEvenSquares(maximumBound): sequence = set([0]) for x in range(0, maximumBound+1, 4): if x % 16 != 8: sequence.add(x) print(sorted(sequence))
Formula
Numbers of the form (2m)^2 - (2n)^2, sorted.
From Chai Wah Wu, Sep 01 2024: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
G.f.: 4*x^2*(x + 1)^2/(x^4 - x^3 - x + 1). (End)
Comments