A267986 Perfect powers of the form x^2 + y^2 + z^2 where x > y > z > 0.
49, 81, 121, 125, 169, 196, 216, 225, 243, 289, 324, 361, 441, 484, 529, 625, 676, 729, 784, 841, 900, 961, 1000, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1681, 1764, 1849, 1936, 2025, 2116, 2187, 2197, 2209, 2401, 2500, 2601, 2704, 2744, 2809, 2916, 3025, 3125, 3136
Offset: 1
Keywords
Examples
49 is a term because 49 = 7^2 = 2^2 + 3^2 + 6^2. 81 is a term because 81 = 9^2 = 1^2 + 4^2 + 8^2. 121 is a term because 121 = 11^2 = 2^2 + 6^2 + 9^2.
Programs
-
Mathematica
fQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Range@ 1800, fQ@ # && Resolve[Exists[{x, y, z}, Reduce[# == x^2 + y^2 + z^2, {x, y, z}, Integers]]] &] (* Michael De Vlieger, Jan 24 2016, after Ant King at A001597 *)
-
PARI
isA004432(n) = for(x=1, sqrtint(n\3), for(y=x+1, sqrtint((n-1-x^2)\2), issquare(n-x^2-y^2) && return(1))); for(n=1, 1e4, if(isA004432(n) && ispower(n), print1(n, ", ")));
Comments