A268086 Decimal expansion of Sum_{k>0} 1/(k*((k+1)^2+1)).
2, 9, 7, 5, 9, 5, 9, 6, 9, 0, 2, 7, 7, 1, 4, 3, 3, 1, 8, 7, 2, 1, 6, 9, 8, 8, 9, 0, 2, 7, 1, 5, 6, 3, 3, 1, 5, 3, 6, 3, 8, 3, 0, 2, 0, 6, 4, 9, 8, 2, 4, 2, 7, 8, 2, 3, 1, 8, 4, 7, 2, 3, 7, 3, 0, 6, 8, 0, 9, 2, 9, 6, 8, 0, 9, 3, 1, 7, 6, 5, 1, 2, 8, 8, 4, 2, 6, 1, 1, 0, 5, 1, 3, 9, 0, 2, 4, 6, 4, 7
Offset: 0
Examples
.297595969027714331872169889027156331536383020649824278231847237306809...
Crossrefs
Programs
-
Maple
((1-I)*(harmonic(1-I) + I*harmonic(1+I)))/4: Re(evalf(%, 106)); # Peter Luschny, Jan 27 2016
-
Mathematica
(1 - I)*(HarmonicNumber[1 - I] + I*HarmonicNumber[1 + I])/4 // Re // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Jan 26 2016 *)
-
Sage
# Warning: Floating point calculation. Adjust precision as needed # and use some guard digits! from mpmath import mp, chop, psi, coth, pi mp.dps = 108; mp.pretty = True chop((psi(0,I-1)-psi(0,1)-I+1)/2-pi*(I+1)*coth(pi)/4) # Peter Luschny, Jan 27 2016
Formula
Equals (1 - i)*(H(1-i) + i*H(1+i))/4, where H(z) is a harmonic number with complex argument.
Equals (Psi(i-1)-Psi(1)-i+1)/2 - Pi*(i+1)*coth(Pi)/4, where Psi(x) is the digamma function. - Peter Luschny, Jan 27 2016
Comments