cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268086 Decimal expansion of Sum_{k>0} 1/(k*((k+1)^2+1)).

Original entry on oeis.org

2, 9, 7, 5, 9, 5, 9, 6, 9, 0, 2, 7, 7, 1, 4, 3, 3, 1, 8, 7, 2, 1, 6, 9, 8, 8, 9, 0, 2, 7, 1, 5, 6, 3, 3, 1, 5, 3, 6, 3, 8, 3, 0, 2, 0, 6, 4, 9, 8, 2, 4, 2, 7, 8, 2, 3, 1, 8, 4, 7, 2, 3, 7, 3, 0, 6, 8, 0, 9, 2, 9, 6, 8, 0, 9, 3, 1, 7, 6, 5, 1, 2, 8, 8, 4, 2, 6, 1, 1, 0, 5, 1, 3, 9, 0, 2, 4, 6, 4, 7
Offset: 0

Views

Author

Bruno Berselli, Jan 26 2016

Keywords

Comments

Also, decimal expansion of Integral_{x=0..1} (2 - (1-i)*x^(1-i) - (1+i)*x^(1+i))/(4 - 4*x) dx, where i is the imaginary unit.

Examples

			.297595969027714331872169889027156331536383020649824278231847237306809...
		

Crossrefs

Cf. A062158: numbers of the form k*((k+1)^2+1), with k>-2.
Cf. A268046: (1+i)*(H(1-i)-i*H(1+i))/4.

Programs

  • Maple
    ((1-I)*(harmonic(1-I) + I*harmonic(1+I)))/4:
    Re(evalf(%, 106)); # Peter Luschny, Jan 27 2016
  • Mathematica
    (1 - I)*(HarmonicNumber[1 - I] + I*HarmonicNumber[1 + I])/4 // Re // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Jan 26 2016 *)
  • Sage
    # Warning: Floating point calculation. Adjust precision as needed
    # and use some guard digits!
    from mpmath import mp, chop, psi, coth, pi
    mp.dps = 108; mp.pretty = True
    chop((psi(0,I-1)-psi(0,1)-I+1)/2-pi*(I+1)*coth(pi)/4) # Peter Luschny, Jan 27 2016

Formula

Equals (1 - i)*(H(1-i) + i*H(1+i))/4, where H(z) is a harmonic number with complex argument.
Equals (Psi(i-1)-Psi(1)-i+1)/2 - Pi*(i+1)*coth(Pi)/4, where Psi(x) is the digamma function. - Peter Luschny, Jan 27 2016