A268137 a(n) = (1/n)*Sum_{k=0..n-1} A001850(k)*A245769(k).
-1, 1, 31, 417, 5919, 97217, 1828479, 38085249, 853450367, 20174707521, 496690317855, 12626836592289, 329476040177439, 8785359461936769, 238587766484265471, 6581966817521388033, 184067922884292651519, 5209333642085984431489, 148992465188631205367071, 4301514890878664802287777
Offset: 1
Keywords
Examples
a(3) = 31 since (A001850(0)*A245769(0) + A001850(1)*A245769(1) + A001850(2)*A245769(2))/3 = (1*(-1) + 3*1 + 13*7)/3 = 93/3 = 31.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, preprint, arXiv:1408.5381 [math.NT], 2014.
- Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, arXiv:1602.00574 [math.CO], 2016.
Programs
-
Mathematica
d[n_]:=d[n]=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}] R[n_]:=R[n]=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}] a[n_]:=a[n]=Sum[d[k]*R[k],{k,0,n-1}]/n Do[Print[n," ",a[n]],{n,1,20}]
Comments