A268136
a(n) = (3/n)*Sum_{k=0..n-1} A245769(k)^2.
Original entry on oeis.org
3, 3, 51, 507, 4947, 58243, 841443, 14240763, 269512483, 5524472451, 120183938835, 2738420763131, 64760819179635, 1579226738429187, 39515677808716739, 1010750709382934523, 26349289260686093379, 698387854199468231427, 18783213754115549685747, 511772677524431483886075
Offset: 1
a(3) = 51 since (3/3)*(A245769(0)^2 + A245769(1)^2 + A245769(2)^2) = (-1)^2 + 1^2 + 7^2 = 51.
-
R[n_]:=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}]
a[n_]:=Sum[R[k]^2,{k,0,n-1}]*3/n
Do[Print[n," ",a[n]],{n,1,20}]
Original entry on oeis.org
1, 5, 51, 747, 13245, 264329, 5721415, 131425079, 3159389817, 78729848397, 2019910325499, 53087981674275, 1423867359013749, 38855956977763857, 1076297858301372687, 30203970496501504239, 857377825323716359665, 24586286492003180067989, 711463902659879056604995, 20756358426519694831851227
Offset: 1
a(3) = 51 since (A001850(0)*A001003(1) + A001850(1)*A001003(2) + A001850(2)*A001003(3))/3 = (1*1 + 3*3 + 13*11)/3 = 153/3 = 51.
- Zhi-Wei Sun, Table of n, a(n)for n = 1..100
- Zhi-Wei Sun, On Delannoy numbers and Schroder numbers, J. Number Theory 131(2011), no.12, 2387-2397.
- Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, arXiv:1602.00574 [math.CO], 2016.
-
A001850 := n -> LegendreP(n, 3); seq(((3*(2*n+1)*A001850(n)*A001850(n-1)-n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4, n=1..20); # Mark van Hoeij, Nov 12 2022
# Alternative (which also gives an integer for n = 0):
f := n -> hypergeom([-n, -n], [1], 2): # A001850
h := n -> hypergeom([-n, n], [1], 2): # A182626
g := n -> hypergeom([-n, n, 1/2], [1, 1], -8): # A358388
a := n -> (f(n)*((3*n + 1)*f(n) - (-1)^n*(6*n + 3)*h(n)) - n*g(n))/(2*n + 2):
seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 13 2022
-
d[n_]:=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}]
s[n_]:=Sum[Binomial[n,k]Binomial[n,k-1]/n*2^(k-1),{k,1,n}]
a[n_]:=Sum[d[k]s[k+1],{k,0,n-1}]/n
Table[a[n],{n,1,20}]
Showing 1-2 of 2 results.
Comments