A268136 a(n) = (3/n)*Sum_{k=0..n-1} A245769(k)^2.
3, 3, 51, 507, 4947, 58243, 841443, 14240763, 269512483, 5524472451, 120183938835, 2738420763131, 64760819179635, 1579226738429187, 39515677808716739, 1010750709382934523, 26349289260686093379, 698387854199468231427, 18783213754115549685747, 511772677524431483886075
Offset: 1
Keywords
Examples
a(3) = 51 since (3/3)*(A245769(0)^2 + A245769(1)^2 + A245769(2)^2) = (-1)^2 + 1^2 + 7^2 = 51.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, preprint, arXiv:1408.5381 [math.NT], 2014.
Programs
-
Mathematica
R[n_]:=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}] a[n_]:=Sum[R[k]^2,{k,0,n-1}]*3/n Do[Print[n," ",a[n]],{n,1,20}]
Comments