Original entry on oeis.org
-1, 1, 31, 417, 5919, 97217, 1828479, 38085249, 853450367, 20174707521, 496690317855, 12626836592289, 329476040177439, 8785359461936769, 238587766484265471, 6581966817521388033, 184067922884292651519, 5209333642085984431489, 148992465188631205367071, 4301514890878664802287777
Offset: 1
a(3) = 31 since (A001850(0)*A245769(0) + A001850(1)*A245769(1) + A001850(2)*A245769(2))/3 = (1*(-1) + 3*1 + 13*7)/3 = 93/3 = 31.
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Two new kinds of numbers and related divisibility results, preprint, arXiv:1408.5381 [math.NT], 2014.
- Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, arXiv:1602.00574 [math.CO], 2016.
-
d[n_]:=d[n]=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}]
R[n_]:=R[n]=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}]
a[n_]:=a[n]=Sum[d[k]*R[k],{k,0,n-1}]/n
Do[Print[n," ",a[n]],{n,1,20}]
Original entry on oeis.org
1, 5, 51, 747, 13245, 264329, 5721415, 131425079, 3159389817, 78729848397, 2019910325499, 53087981674275, 1423867359013749, 38855956977763857, 1076297858301372687, 30203970496501504239, 857377825323716359665, 24586286492003180067989, 711463902659879056604995, 20756358426519694831851227
Offset: 1
a(3) = 51 since (A001850(0)*A001003(1) + A001850(1)*A001003(2) + A001850(2)*A001003(3))/3 = (1*1 + 3*3 + 13*11)/3 = 153/3 = 51.
- Zhi-Wei Sun, Table of n, a(n)for n = 1..100
- Zhi-Wei Sun, On Delannoy numbers and Schroder numbers, J. Number Theory 131(2011), no.12, 2387-2397.
- Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, arXiv:1602.00574 [math.CO], 2016.
-
A001850 := n -> LegendreP(n, 3); seq(((3*(2*n+1)*A001850(n)*A001850(n-1)-n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4, n=1..20); # Mark van Hoeij, Nov 12 2022
# Alternative (which also gives an integer for n = 0):
f := n -> hypergeom([-n, -n], [1], 2): # A001850
h := n -> hypergeom([-n, n], [1], 2): # A182626
g := n -> hypergeom([-n, n, 1/2], [1, 1], -8): # A358388
a := n -> (f(n)*((3*n + 1)*f(n) - (-1)^n*(6*n + 3)*h(n)) - n*g(n))/(2*n + 2):
seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 13 2022
-
d[n_]:=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}]
s[n_]:=Sum[Binomial[n,k]Binomial[n,k-1]/n*2^(k-1),{k,1,n}]
a[n_]:=Sum[d[k]s[k+1],{k,0,n-1}]/n
Table[a[n],{n,1,20}]
Showing 1-2 of 2 results.
Comments