cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A268137 a(n) = (1/n)*Sum_{k=0..n-1} A001850(k)*A245769(k).

Original entry on oeis.org

-1, 1, 31, 417, 5919, 97217, 1828479, 38085249, 853450367, 20174707521, 496690317855, 12626836592289, 329476040177439, 8785359461936769, 238587766484265471, 6581966817521388033, 184067922884292651519, 5209333642085984431489, 148992465188631205367071, 4301514890878664802287777
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2016

Keywords

Comments

Conjecture: (i) All the terms are odd integers. For any prime p, if p == 3 (mod 4) then a(p) == -5 (mod p^2), otherwise a(p) == -1 (mod p).
(ii) For n = 0,1,2,... let D_n(x) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*x^k and R_n(x) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*x^k/(2k-1). For any positive integer n, all the coefficients of the polynomial (1/n)*Sum_{k=0..n-1} D_k(x)*R_k(x) are integral and the polynomial is irreducible over the field of rational numbers.

Examples

			a(3) = 31 since (A001850(0)*A245769(0) + A001850(1)*A245769(1) + A001850(2)*A245769(2))/3 = (1*(-1) + 3*1 + 13*7)/3 = 93/3 = 31.
		

Crossrefs

Programs

  • Mathematica
    d[n_]:=d[n]=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}]
    R[n_]:=R[n]=Sum[Binomial[n,k]Binomial[n+k,k]/(2k-1),{k,0,n}]
    a[n_]:=a[n]=Sum[d[k]*R[k],{k,0,n-1}]/n
    Do[Print[n," ",a[n]],{n,1,20}]

A268138 a(n) = (Sum_{k=0..n-1} A001850(k)*A001003(k+1))/n.

Original entry on oeis.org

1, 5, 51, 747, 13245, 264329, 5721415, 131425079, 3159389817, 78729848397, 2019910325499, 53087981674275, 1423867359013749, 38855956977763857, 1076297858301372687, 30203970496501504239, 857377825323716359665, 24586286492003180067989, 711463902659879056604995, 20756358426519694831851227
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2016

Keywords

Comments

Conjecture: (i) All the terms are odd integers. Also, p | a(p) for any odd prime p.
(ii) Let D_n(x) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*x^k = Sum_{k=0..n} binomial(n,k)^2*x^k*(x+1)^(n-k) for n >= 0, and s_n(x) = Sum_{k=1..n} (binomial(n,k)*binomial(n,k-1)/n)*x^(k-1)*(x+1)^(n-k) = (Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*x^k/(k+1))/(x+1) for n > 0. Then, for any positive integer n, all the coefficients of the polynomial (1/n)*Sum_{k=0..n-1} D_k(x)*s_{k+1}(x) are integral and the polynomial is irreducible over the field of rational numbers.
The conjecture was essentially proved by the author in arXiv:1602.00574, except for the irreducibility of (Sum_{k=0..n-1} D_k(x)*s_{k+1}(x))/n. - Zhi-Wei Sun, Feb 01 2016

Examples

			a(3) = 51 since (A001850(0)*A001003(1) + A001850(1)*A001003(2) + A001850(2)*A001003(3))/3 = (1*1 + 3*3 + 13*11)/3 = 153/3 = 51.
		

Crossrefs

Programs

  • Maple
    A001850 := n -> LegendreP(n, 3); seq(((3*(2*n+1)*A001850(n)*A001850(n-1)-n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4, n=1..20); # Mark van Hoeij, Nov 12 2022
    # Alternative (which also gives an integer for n = 0):
    f := n -> hypergeom([-n, -n], [1], 2):          # A001850
    h := n -> hypergeom([-n,  n], [1], 2):          # A182626
    g := n -> hypergeom([-n,  n, 1/2], [1, 1], -8): # A358388
    a := n -> (f(n)*((3*n + 1)*f(n) - (-1)^n*(6*n + 3)*h(n)) - n*g(n))/(2*n + 2):
    seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 13 2022
  • Mathematica
    d[n_]:=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}]
    s[n_]:=Sum[Binomial[n,k]Binomial[n,k-1]/n*2^(k-1),{k,1,n}]
    a[n_]:=Sum[d[k]s[k+1],{k,0,n-1}]/n
    Table[a[n],{n,1,20}]

Formula

a(n) = ((3*(2*n+1)*A001850(n)*A001850(n-1) - n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4. - Mark van Hoeij, Nov 12 2022
G.f.: (1-(1+1/x)*Int((1-34*x+x^2)^(1/2) * hypergeom([-1/2,1/2],[1], -32*x/(1-34*x+x^2))/((1-x)*(1+x)^2),x))/4. - Mark van Hoeij, Nov 28 2024
Showing 1-2 of 2 results.