A268138 a(n) = (Sum_{k=0..n-1} A001850(k)*A001003(k+1))/n.
1, 5, 51, 747, 13245, 264329, 5721415, 131425079, 3159389817, 78729848397, 2019910325499, 53087981674275, 1423867359013749, 38855956977763857, 1076297858301372687, 30203970496501504239, 857377825323716359665, 24586286492003180067989, 711463902659879056604995, 20756358426519694831851227
Offset: 1
Keywords
Examples
a(3) = 51 since (A001850(0)*A001003(1) + A001850(1)*A001003(2) + A001850(2)*A001003(3))/3 = (1*1 + 3*3 + 13*11)/3 = 153/3 = 51.
Links
- Zhi-Wei Sun, Table of n, a(n)for n = 1..100
- Zhi-Wei Sun, On Delannoy numbers and Schroder numbers, J. Number Theory 131(2011), no.12, 2387-2397.
- Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, arXiv:1602.00574 [math.CO], 2016.
Programs
-
Maple
A001850 := n -> LegendreP(n, 3); seq(((3*(2*n+1)*A001850(n)*A001850(n-1)-n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4, n=1..20); # Mark van Hoeij, Nov 12 2022 # Alternative (which also gives an integer for n = 0): f := n -> hypergeom([-n, -n], [1], 2): # A001850 h := n -> hypergeom([-n, n], [1], 2): # A182626 g := n -> hypergeom([-n, n, 1/2], [1, 1], -8): # A358388 a := n -> (f(n)*((3*n + 1)*f(n) - (-1)^n*(6*n + 3)*h(n)) - n*g(n))/(2*n + 2): seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 13 2022
-
Mathematica
d[n_]:=Sum[Binomial[n,k]Binomial[n+k,k],{k,0,n}] s[n_]:=Sum[Binomial[n,k]Binomial[n,k-1]/n*2^(k-1),{k,1,n}] a[n_]:=Sum[d[k]s[k+1],{k,0,n-1}]/n Table[a[n],{n,1,20}]
Formula
a(n) = ((3*(2*n+1)*A001850(n)*A001850(n-1) - n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4. - Mark van Hoeij, Nov 12 2022
G.f.: (1-(1+1/x)*Int((1-34*x+x^2)^(1/2) * hypergeom([-1/2,1/2],[1], -32*x/(1-34*x+x^2))/((1-x)*(1+x)^2),x))/4. - Mark van Hoeij, Nov 28 2024
Comments