cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268149 A double binomial sum involving absolute values.

Original entry on oeis.org

0, 24, 1120, 33264, 823680, 18475600, 389398464, 7862853600, 153876579840, 2940343837200, 55138611528000, 1018383898440480, 18574619721465600, 335240928272918304, 5996573430996184960, 106438123408375281600, 1876607120325212706816, 32891715945378106711440
Offset: 0

Views

Author

Richard P. Brent, Jan 27 2016

Keywords

Comments

A fast algorithm follows from Theorem 1 of Brent et al. article.

Crossrefs

Programs

  • PARI
    a(n) = sum(k=-n,n, sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^3));

Formula

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^3).
Conjecture D-finite with recurrence (2*n-1)*(n-1)*a(n) +2*(-22*n^2+27*n-36)*a(n-1) +12*(4*n-5)*(4*n-7)*a(n-2)=0. - R. J. Mathar, Feb 27 2023