cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A268151 A double binomial sum involving absolute values.

Original entry on oeis.org

0, 40, 2816, 104448, 3014656, 76021760, 1761607680, 38520487936, 807453851648, 16389595201536, 324355930193920, 6289206510878720, 119908340078739456, 2254051613498933248, 41865462136036130816, 769575104325070356480, 14019525496019259228160, 253384476596474400997376
Offset: 0

Views

Author

Richard P. Brent, Jan 27 2016

Keywords

Comments

A fast algorithm follows from Theorem 1 of Brent et al. article.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{48,-768,4096},{0,40,2816},20] (* Harvey P. Dale, Apr 28 2022 *)
  • PARI
    a(n) = sum(k=-n,n, sum(l=-n,n, binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^4));
    
  • PARI
    concat(0, Vec(8*x*(5+112*x)/(1-16*x)^3 + O(x^20))) \\ Colin Barker, Feb 11 2016

Formula

a(n) = Sum_{k=-n..n} (Sum_{l=-n..n} binomial(2*n, n+k)*binomial(2*n, n+l)*abs(k-l)^4).
From Colin Barker, Feb 11 2016: (Start)
a(n) = 2^(4*n-1)*n*(6*n-1).
a(n) = 48*a(n-1)-768*a(n-2)+4096*a(n-3) for n>2.
G.f.: 8*x*(5+112*x) / (1-16*x)^3.
(End)

A272913 a(n) = 3*2^(2*n-1)*(n-1)*n^3*binomial(2*n,n)^2, a closed form for a triple binomial sum involving absolute values.

Original entry on oeis.org

0, 0, 6912, 2073600, 361267200, 48771072000, 5665247723520, 595732271726592, 58357447026278400, 5420989989833932800, 483204292920999936000, 41671538221507034480640, 3497929581885972295974912, 287077554068924493987840000, 23115688495680026711162880000
Offset: 0

Views

Author

Bruno Berselli, May 10 2016

Keywords

Comments

See Theorem 6 of Brent et al. article.
a(n) is divisible by 48^2.

Crossrefs

Programs

  • Magma
    [3*2^(2*n-1)*(n-1)*n^3*Binomial(2*n,n)^2: n in [0..20]];
  • Mathematica
    Table[3 2^(2 n - 1) (n - 1) n^3 Binomial[2 n, n]^2, {n, 0, 20}]
  • PARI
    vector(20, n, n--; 3*2^(2*n-1)*(n-1)*n^3*binomial(2*n,n)^2)
    
  • Sage
    [3*2^(2*n-1)*(n-1)*n^3*binomial(2*n, n)^2 for n in range(20)]
    

Formula

a(n) = Sum_{i=-n..n} (Sum_{j=-n..n} (Sum_{k=-n..n} binomial(2*n, n+i)*binomial(2*n, n+j)*binomial(2*n, n+k)*|(i^2-j^2)*(i^2-k^2)*(j^2-k^2)|)).
G.f.: 6912*x^2*(2F1(5/2, 5/2, 2, 64*x) + 100*x*2F1(7/2, 7/2, 3, 64*x)), where 2F1() is the Gauss hypergeometric function.
D-finite with recurrence (n-2)*(n-1)^2*a(n) -16*n*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Feb 08 2021
Showing 1-2 of 2 results.