A268177 Numbers m such that Sum_{i=1..q} 1/lambda(d(i)) is an integer, where d(i) are the q divisors of m and lambda is the Carmichael lambda function (A002322).
1, 2, 6, 8, 12, 15, 24, 28, 30, 40, 70, 84, 112, 120, 140, 210, 240, 252, 280, 315, 336, 351, 357, 360, 420, 550, 630, 684, 702, 714, 836, 840, 884, 912, 952, 988, 1092, 1100, 1120, 1140, 1364, 1386, 1650, 1710, 1820, 2002, 2040, 2088, 2090, 2200, 2394, 2484
Offset: 1
Keywords
Examples
6 is in the sequence because the divisors of 6 are {1,2,3,6} => 1/lambda(1)+1/lambda(2)+1/lambda(3)+ 1/lambda(6) = 1/1 + 1/1 + 1/2 + 1/2 = 3 is an integer.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lst={};Do[If[IntegerQ[Total[1/CarmichaelLambda[Divisors[n]]]],AppendTo[lst,n]], {n, 0, 2500}];lst
Comments