A268186 Numbers n such that n^2 + 2, n^2 - 2, n + 2 and n - 2 are all semiprimes.
12, 53, 84, 204, 207, 251, 379, 413, 456, 471, 483, 631, 687, 705, 765, 783, 1079, 1135, 1140, 1167, 1269, 1335, 1347, 1395, 1475, 1515, 1587, 1641, 1709, 1767, 1851, 1855, 1943, 1959, 2049, 2157, 2319, 2325, 2575, 2843, 2865, 3099, 3153, 3225, 3267, 3601, 3779
Offset: 1
Examples
12 appears in the sequence because: 12^2 + 2 = 146 = 2*73 12^2 - 2 = 142 = 2*71 12 + 2 = 14 = 2*7 12 - 2 = 10 = 2*5 are all semiprimes.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..3379
Crossrefs
Programs
-
Magma
IsSemiprime:=func;[ n : n in [2..10000] | IsSemiprime(n^2 + 2) and IsSemiprime(n^2 - 2) and IsSemiprime(n + 2) and IsSemiprime(n - 2)];
-
Maple
with(numtheory): select(n -> (bigomega(n^2 + 2)=2 and bigomega(n^2 - 2)=2 and bigomega(n + 2)=2 and bigomega(n - 2)=2), [seq(n, n=1..10000)]);
-
Mathematica
Select[Range[10000], PrimeOmega[#^2 + 2] == PrimeOmega[#^2 - 2] == PrimeOmega[# + 2] == PrimeOmega[# - 2] == 2 &]
-
PARI
for(n = 1, 10000,if(bigomega(n^2 + 2) == 2 && bigomega(n^2 - 2) == 2 && bigomega(n + 2) == 2 && bigomega(n - 2) == 2, print1(n, ", ")))