cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268190 Triangle read by rows: T(n,k) (n, k>=1) is the number of partitions of n such that the difference between the two largest distinct parts is k; T(n,0) is the number of partitions of n in which all parts are equal.

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 1, 2, 3, 1, 1, 4, 3, 2, 1, 1, 2, 6, 3, 2, 1, 1, 4, 7, 5, 2, 2, 1, 1, 3, 11, 5, 5, 2, 2, 1, 1, 4, 13, 10, 5, 4, 2, 2, 1, 1, 2, 20, 11, 8, 5, 4, 2, 2, 1, 1, 6, 23, 16, 10, 8, 4, 4, 2, 2, 1, 1, 2, 33, 20, 15, 9, 8, 4, 4
Offset: 1

Views

Author

Emeric Deutsch, Feb 10 2016

Keywords

Comments

Sum of entries in row n is A000041(n) (the partition numbers).
T(n,0) = A000005(n) = number of divisors of n.
T(n,1) = A083751(n+1) for n>=3.
Sum(k*T(n,k),k>=1) = A268191(n).
T(2n,n) = A002865(n) for n>=2. - Alois P. Heinz, Feb 11 2016

Examples

			T(5,0)=2 because we have [5] and [1,1,1,1,1]; T(5,1)=3 because we have [3,2], [2,2,1], and [2,1,1,1]; T(5,2)=1 because we have [3,1,1]; T(5,3)=1 because we have [4,1].
Triangle starts:
1;
2;
2,1;
3,1,1;
2,3,1,1;
4,3,2,1,1;
		

Crossrefs

Programs

  • Maple
    G := add(x^k/(1-x^k), k = 1 .. 80)+ add(add(t^(i-j)*x^(i+j)/((1-x^i)*mul(1-x^k,k = 1 .. j)), j = 1 .. i-1), i = 2 .. 80): Gser := simplify(series(G, x = 0, 35)): for n from 0 to 30 do P[n] := sort(coeff(Gser, x, n)) end do: 1; for n from 2 to 25 do seq(coeff(P[n], t, j), j = 0 .. n-2) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, l, i) option remember; `if`(irem(n, i)=0, x^
          `if`(l=0, 0, i-l), 0) +`if`(i>n, 0, add(b(n-i*j,
          `if`(j=0, l, i), i+1), j=0..(n-1)/i))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=1..30);  # Alois P. Heinz, Feb 11 2016
  • Mathematica
    b[n_, l_, i_] := b[n, l, i] = If[Mod[n, i] == 0, x^If[l == 0, 0, i-l], 0] + If[i>n, 0, Sum[b[n-i*j, If[j == 0, l, i], i+1], {j, 0, (n-1)/i}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Sum_{k>0} (x^k/(1-x^k)) + Sum_{k>1} (Sum_{j=1..i-1} t^{i-j}*x^{i+j}/((1 - x^i)*Product_{k=1..j} (1 - x^k))).