A268193 Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of partitions of n which have k distinct parts i such that i+1 is also a part.
1, 2, 2, 1, 4, 1, 4, 3, 8, 2, 1, 8, 6, 1, 13, 7, 2, 15, 11, 4, 22, 15, 4, 1, 24, 24, 7, 1, 37, 26, 12, 2, 40, 42, 16, 3, 57, 50, 22, 6, 64, 72, 33, 6, 1, 89, 84, 46, 11, 1, 98, 122, 60, 15, 2, 135, 141, 82, 24, 3, 149, 198, 106, 32, 5, 199, 231, 144, 45, 8, 224, 309, 187, 61, 10, 1
Offset: 1
Examples
T(5,1) = 3 because we have [3,2], [2,2,1], and [2,1,1,1]. T(9,2) = 4 because we have [3,2',1,1,1,1'], [3,2,2',1,1'], [3,3,2',1'], and [4,3',2'] (the i's are marked). Triangle starts: 1; 2; 2,1; 4,1; 4,3; 8,2,1; 8,6,1; From _Gus Wiseman_, Jul 11 2025: (Start) Row n = 8 counts the following partitions by number of singleton parts other than the largest part: (8) (5,3) (4,3,1) (4,4) (6,2) (5,2,1) (4,2,2) (7,1) (6,1,1) (3,3,2) (2,2,2,2) (3,2,2,1) (3,3,1,1) (4,2,1,1) (5,1,1,1) (3,2,1,1,1) (2,2,2,1,1) (4,1,1,1,1) (2,2,1,1,1,1) (3,1,1,1,1,1) (2,1,1,1,1,1,1) (1,1,1,1,1,1,1,1) (End)
Links
- Alois P. Heinz, Rows n = 1..800, flattened
Crossrefs
Programs
-
Maple
g := add(x^j*mul(1+t*x^i+x^(2*i)/(1-x^i), i = 1 .. j-1)/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 27)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n to 25 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, i, t) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, t or j>0)* `if`(t and j=1, x, 1), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, false)): seq(T(n), n=1..20); # Alois P. Heinz, Feb 13 2016
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, t || j > 0]*If[t && j == 1, x, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, False]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1!=#2+1&]]==k&]],{n,0,10},{k,0,n}] (* Delete zeros for A268193. Gus Wiseman, Jul 10 2025 *)
Comments