cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268201 a(n) = 4*n^3 - 6*n^2 + 3*n - 1.

Original entry on oeis.org

0, 13, 62, 171, 364, 665, 1098, 1687, 2456, 3429, 4630, 6083, 7812, 9841, 12194, 14895, 17968, 21437, 25326, 29659, 34460, 39753, 45562, 51911, 58824, 66325, 74438, 83187, 92596, 102689, 113490, 125023, 137312, 150381, 164254, 178955, 194508, 210937, 228266, 246519, 265720
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 16 2016

Keywords

Comments

Nonnegative numbers n such that 2*n+1 is a cube.
Or, (y^k-1)/2 for k odd. - N. J. A. Sloane, Mar 05 2022

Examples

			a(1) = 0 because 4*1^3 - 6*1^2 + 3*1 - 1 = 0.
a(2) = 13 because 4*2^3 - 6*2^2 + 3*2 - 1 = 13.
		

References

  • H. Brocard, #2158, L'Intermédiaire des Mathématiciens, 10 (1903), 282-283

Crossrefs

Cf. nonnegative numbers n such that 2*n + k is a cube: A271828 (k=-3), A050492 (k=-1), this sequence (k=1).

Programs

  • Magma
    [((2*n-1)^3-1)/2: n in [0..41]];
    
  • Maple
    A268201:=n->4*n^3 - 6*n^2 + 3*n - 1: seq(A268201(n), n=1..80); # Wesley Ivan Hurt, Apr 17 2016
  • Mathematica
    Table[((2 n - 1)^3 - 1)/2, {n, 41}] (* or *)
    CoefficientList[Series[(13*x + 10*x^2 + x^3)/(-1 + x)^4, {x, 0, 40}],
       x] (* Michael De Vlieger, Apr 16 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, print1(4*n^3-6*n^2+3*n-1, ", ")); \\ Altug Alkan, Apr 17 2016

Formula

G.f.: (13*x + 10*x^2 + x^3)/(-1 + x)^4. - Michael De Vlieger, Apr 16 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Apr 17 2016