A268253 a(n) begins the first chain of 5 consecutive positive integers of h-values with symmetrical gaps about the center, where h(k) is the length of the finite sequence k, f(k), f(f(k)), ..., 1 in the Collatz (or 3x + 1) problem.
98, 130, 290, 354, 386, 387, 418, 507, 514, 610, 628, 802, 840, 841, 866, 943, 944, 945, 1003, 1121, 1122, 1154, 1172, 1186, 1272, 1314, 1378, 1442, 1494, 1495, 1496, 1497, 1538, 1634, 1680, 1681, 1682, 1683, 1684, 1698, 1699, 1826, 1890, 1922, 1923, 1991, 1992
Offset: 1
Keywords
Examples
In 5-tuple of consecutive {h(k)}: {h(1272),h(1273),h(1274),h(1275),h(1276)} = {57,31,57,83,57}, the central value is 57, and 57+57 = 31+83 = 2*57. Hence, 1272 is in the sequence. Alternatively, the symmetry can be seen from the differences between consecutive {h(k)}. For {57,31,57,83,57}, the differences {h(k+1)-h(k)} are {-26,26,26,-26}.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1560
Programs
-
Mathematica
lst={};f[n_]:=Module[{a=n,k=0},While[a!=1,k++;If[EvenQ[a],a=a/2,a=a*3+1]];k];Do[If[f[m]+f[m+4]==f[m+1]+f[m+3]&&f[m+2]==(f[m]+f[m+4])/2,AppendTo[lst,m]],{m,1,4000}];lst
Comments